Wang, Bixiang Well-posedness and long term behavior of supercritical wave equations driven by nonlinear colored noise on \(\mathbb{R}^n\). (English) Zbl 1487.35105 J. Funct. Anal. 283, No. 2, Article ID 109498, 55 p. (2022). MSC: 35B41 35R60 35L15 35L71 60H15 PDF BibTeX XML Cite \textit{B. Wang}, J. Funct. Anal. 283, No. 2, Article ID 109498, 55 p. (2022; Zbl 1487.35105) Full Text: DOI
Chen, Jie; Wang, Baoxiang Almost sure scattering for the nonlinear Klein-Gordon equations with Sobolev critical power. (English) Zbl 1483.35136 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112732, 33 p. (2022). MSC: 35L71 35L15 35P25 35R60 PDF BibTeX XML Cite \textit{J. Chen} and \textit{B. Wang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112732, 33 p. (2022; Zbl 1483.35136) Full Text: DOI arXiv
Inui, Takahisa; Wakasugi, Yuta Unconditional well-posedness for the energy-critical nonlinear damped wave equation. (English) Zbl 1481.35281 J. Evol. Equ. 21, No. 4, 5171-5201 (2021). MSC: 35L71 35A02 35L15 PDF BibTeX XML Cite \textit{T. Inui} and \textit{Y. Wakasugi}, J. Evol. Equ. 21, No. 4, 5171--5201 (2021; Zbl 1481.35281) Full Text: DOI
D’Ancona, Piero On the supercritical defocusing NLW outside a ball. (English) Zbl 1476.35143 Anal. Math. Phys. 11, No. 4, Paper No. 141, 29 p. (2021). MSC: 35L71 35B40 35L20 58J45 PDF BibTeX XML Cite \textit{P. D'Ancona}, Anal. Math. Phys. 11, No. 4, Paper No. 141, 29 p. (2021; Zbl 1476.35143) Full Text: DOI arXiv
Looi, Shi-Zhuo; Tohaneanu, Mihai Scattering for critical wave equations with variable coefficients. (English) Zbl 1467.35230 Proc. Edinb. Math. Soc., II. Ser. 64, No. 2, 298-316 (2021). MSC: 35P25 35L15 35L71 PDF BibTeX XML Cite \textit{S.-Z. Looi} and \textit{M. Tohaneanu}, Proc. Edinb. Math. Soc., II. Ser. 64, No. 2, 298--316 (2021; Zbl 1467.35230) Full Text: DOI arXiv
Mei, Xinyu; Savostianov, Anton; Sun, Chunyou; Zelik, Sergey Infinite energy solutions for weakly damped quintic wave equations in \(\mathbb{R}^3\). (English) Zbl 1460.35040 Trans. Am. Math. Soc. 374, No. 5, 3093-3129 (2021). MSC: 35B40 35B41 35B45 35L71 35L15 PDF BibTeX XML Cite \textit{X. Mei} et al., Trans. Am. Math. Soc. 374, No. 5, 3093--3129 (2021; Zbl 1460.35040) Full Text: DOI arXiv
Murphy, Jason; Zhang, Yanzhi Numerical simulations for the energy-supercritical nonlinear wave equation. (English) Zbl 1452.35105 Nonlinearity 33, No. 11, 6195-6220 (2020). MSC: 35L71 35L15 35Q55 PDF BibTeX XML Cite \textit{J. Murphy} and \textit{Y. Zhang}, Nonlinearity 33, No. 11, 6195--6220 (2020; Zbl 1452.35105) Full Text: DOI arXiv
Shen, Ruipeng Inward/outward energy theory of non-radial solutions to 3D semi-linear wave equation. (English) Zbl 1450.35175 Adv. Math. 374, Article ID 107384, 46 p. (2020). MSC: 35L71 35L15 PDF BibTeX XML Cite \textit{R. Shen}, Adv. Math. 374, Article ID 107384, 46 p. (2020; Zbl 1450.35175) Full Text: DOI arXiv
Savostianov, Anton K.; Zelik, Sergeĭ V. Uniform attractors for measure-driven quintic wave equations. (English. Russian original) Zbl 1445.35080 Russ. Math. Surv. 75, No. 2, 253-320 (2020); translation from Usp. Mat. Nauk 75, No. 2, 61-132 (2020). MSC: 35B41 35B45 35L71 35L20 PDF BibTeX XML Cite \textit{A. K. Savostianov} and \textit{S. V. Zelik}, Russ. Math. Surv. 75, No. 2, 253--320 (2020; Zbl 1445.35080); translation from Usp. Mat. Nauk 75, No. 2, 61--132 (2020) Full Text: DOI
Miao, Changxing; Murphy, Jason; Zheng, Jiqiang The energy-critical nonlinear wave equation with an inverse-square potential. (English) Zbl 1433.35199 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 2, 417-456 (2020). MSC: 35L71 35L15 PDF BibTeX XML Cite \textit{C. Miao} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 2, 417--456 (2020; Zbl 1433.35199) Full Text: DOI arXiv
Zhang, Junyong; Zheng, Jiqiang Strichartz estimates and wave equation in a conic singular space. (English) Zbl 1433.42026 Math. Ann. 376, No. 1-2, 525-581 (2020). MSC: 42B37 35L05 35Q40 47J35 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{J. Zheng}, Math. Ann. 376, No. 1--2, 525--581 (2020; Zbl 1433.42026) Full Text: DOI arXiv
Inui, Takahisa The Strichartz estimates for the damped wave equation and the behavior of solutions for the energy critical nonlinear equation. (English) Zbl 1435.35253 NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 6, Paper No. 50, 30 p. (2019). Reviewer: Alessandro Selvitella (Fort Wayne) MSC: 35L71 35A01 35B40 35B44 35B45 PDF BibTeX XML Cite \textit{T. Inui}, NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 6, Paper No. 50, 30 p. (2019; Zbl 1435.35253) Full Text: DOI arXiv
Duyckaerts, Thomas; Kenig, Carlos E.; Merle, Frank Scattering profile for global solutions of the energy-critical wave equation. (English) Zbl 1437.35497 J. Eur. Math. Soc. (JEMS) 21, No. 7, 2117-2162 (2019). MSC: 35L71 35L15 35B33 35B40 PDF BibTeX XML Cite \textit{T. Duyckaerts} et al., J. Eur. Math. Soc. (JEMS) 21, No. 7, 2117--2162 (2019; Zbl 1437.35497) Full Text: DOI arXiv
Duyckaerts, Thomas; Yang, Jianwei Blow-up of a critical Sobolev norm for energy-subcritical and energy-supercritical wave equations. (English) Zbl 1395.35043 Anal. PDE 11, No. 4, 983-1028 (2018). Reviewer: Dongbing Zha (Shanghai) MSC: 35B44 35L71 35B40 PDF BibTeX XML Cite \textit{T. Duyckaerts} and \textit{J. Yang}, Anal. PDE 11, No. 4, 983--1028 (2018; Zbl 1395.35043) Full Text: DOI arXiv
Pocovnicu, Oana Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on \(\mathbb R^d\), \(d=4\) and \(5\). (English) Zbl 1375.35278 J. Eur. Math. Soc. (JEMS) 19, No. 8, 2521-2575 (2017). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 35L71 35R60 35L15 PDF BibTeX XML Cite \textit{O. Pocovnicu}, J. Eur. Math. Soc. (JEMS) 19, No. 8, 2521--2575 (2017; Zbl 1375.35278) Full Text: DOI arXiv
Duyckaerts, Thomas Dynamics of the focusing critical wave equation. (English) Zbl 1362.35189 Sémin. Laurent Schwartz, EDP Appl. 2015-2016, Exp. No. 8, 9 p. (2016). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 35L71 35C08 35B40 35B44 PDF BibTeX XML Cite \textit{T. Duyckaerts}, Sémin. Laurent Schwartz, EDP Appl. 2015--2016, Exp. No. 8, 9 p. (2016; Zbl 1362.35189) Full Text: DOI Link
Martel, Yvan; Merle, Frank Construction of multi-solitons for the energy-critical wave equation in dimension 5. (English) Zbl 1359.35166 Arch. Ration. Mech. Anal. 222, No. 3, 1113-1160 (2016). Reviewer: Boris A. Malomed (Tel Aviv) MSC: 35Q51 35C08 35C07 PDF BibTeX XML Cite \textit{Y. Martel} and \textit{F. Merle}, Arch. Ration. Mech. Anal. 222, No. 3, 1113--1160 (2016; Zbl 1359.35166) Full Text: DOI arXiv
Kalantarov, Varga; Savostianov, Anton; Zelik, Sergey Attractors for damped quintic wave equations in bounded domains. (English) Zbl 1356.35055 Ann. Henri Poincaré 17, No. 9, 2555-2584 (2016). Reviewer: Jauber C. Oliveira (Florianopolis) MSC: 35B41 35B65 35L71 35L20 PDF BibTeX XML Cite \textit{V. Kalantarov} et al., Ann. Henri Poincaré 17, No. 9, 2555--2584 (2016; Zbl 1356.35055) Full Text: DOI arXiv
Oh, Tadahiro; Pocovnicu, Oana Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on \(\mathbb R^3\). (English. French summary) Zbl 1343.35167 J. Math. Pures Appl. (9) 105, No. 3, 342-366 (2016). MSC: 35L71 35L15 35R60 PDF BibTeX XML Cite \textit{T. Oh} and \textit{O. Pocovnicu}, J. Math. Pures Appl. (9) 105, No. 3, 342--366 (2016; Zbl 1343.35167) Full Text: DOI arXiv
Meng, Fengjuan; Liu, Cuncai Remark on global attractor for damped wave equation on \(\mathbb{R}^{3}\). (English) Zbl 1422.35006 Adv. Difference Equ. 2015, Paper No. 375, 9 p. (2015). MSC: 35B40 35B41 37L30 PDF BibTeX XML Cite \textit{F. Meng} and \textit{C. Liu}, Adv. Difference Equ. 2015, Paper No. 375, 9 p. (2015; Zbl 1422.35006) Full Text: DOI
Miao, Changxing; Zhang, Junyong; Zheng, Jiqiang Scattering theory for the radial \(\dot{H}^{\frac{1}{2}}\)-critical wave equation with a cubic convolution. (English) Zbl 1327.35283 J. Differ. Equations 259, No. 12, 7199-7237 (2015). Reviewer: Alain Brillard (Riedisheim) MSC: 35P25 35L71 35B40 35Q40 76B15 PDF BibTeX XML Cite \textit{C. Miao} et al., J. Differ. Equations 259, No. 12, 7199--7237 (2015; Zbl 1327.35283) Full Text: DOI arXiv
Todorova, Grozdena; Yordanov, Borislav On the regularizing effect of nonlinear damping in hyperbolic equations. (English) Zbl 1315.35049 Trans. Am. Math. Soc. 367, No. 7, 5043-5058 (2015). MSC: 35B65 35B33 35L71 PDF BibTeX XML Cite \textit{G. Todorova} and \textit{B. Yordanov}, Trans. Am. Math. Soc. 367, No. 7, 5043--5058 (2015; Zbl 1315.35049) Full Text: DOI
Killip, Rowan; Stovall, Betsy; Visan, Monica Blowup behaviour for the nonlinear Klein-Gordon equation. (English) Zbl 1290.35227 Math. Ann. 358, No. 1-2, 289-350 (2014). Reviewer: Ahmed Lesfari (El Jadida) MSC: 35Q53 35L71 35Q40 35B44 PDF BibTeX XML Cite \textit{R. Killip} et al., Math. Ann. 358, No. 1--2, 289--350 (2014; Zbl 1290.35227) Full Text: DOI arXiv
Shakra, Farah Abou Asymptotics of wave models for non star-shaped geometries. (English) Zbl 1275.35040 Discrete Contin. Dyn. Syst., Ser. S 7, No. 2, 347-362 (2014). MSC: 35B40 35L70 35L20 35B33 35Q55 PDF BibTeX XML Cite \textit{F. A. Shakra}, Discrete Contin. Dyn. Syst., Ser. S 7, No. 2, 347--362 (2014; Zbl 1275.35040) Full Text: DOI
Zhang, Junyong Scattering theory for the cubic nonlinear Klein-Gordon system. (English) Zbl 1273.35203 Math. Methods Appl. Sci. 36, No. 14, 1825-1844 (2013). MSC: 35P25 35L05 35L15 35Q55 PDF BibTeX XML Cite \textit{J. Zhang}, Math. Methods Appl. Sci. 36, No. 14, 1825--1844 (2013; Zbl 1273.35203) Full Text: DOI
Saanouni, T. Blowing-up semilinear wave equation with exponential nonlinearity in two space dimensions. (English) Zbl 1275.35051 Proc. Indian Acad. Sci., Math. Sci. 123, No. 3, 365-372 (2013). MSC: 35B44 35L71 35L15 PDF BibTeX XML Cite \textit{T. Saanouni}, Proc. Indian Acad. Sci., Math. Sci. 123, No. 3, 365--372 (2013; Zbl 1275.35051) Full Text: DOI
Donninger, Roland; Krieger, Joachim Nonscattering solutions and blowup at infinity for the critical wave equation. (English) Zbl 1280.35135 Math. Ann. 357, No. 1, 89-163 (2013). Reviewer: Xingbin Pan (Shanghai) MSC: 35Q55 35L05 35B33 35B40 35B44 PDF BibTeX XML Cite \textit{R. Donninger} and \textit{J. Krieger}, Math. Ann. 357, No. 1, 89--163 (2013; Zbl 1280.35135) Full Text: DOI arXiv
Bulut, Aynur; Czubak, Magdalena; Li, Dong; Pavlović, Nataša; Zhang, Xiaoyi Stability and unconditional uniqueness of solutions for energy critical wave equations in high dimensions. (English) Zbl 1332.35007 Commun. Partial Differ. Equations 38, No. 4-6, 575-607 (2013). Reviewer: Jean-Marc Bouclet (Toulouse) MSC: 35A02 35L71 35B35 PDF BibTeX XML Cite \textit{A. Bulut} et al., Commun. Partial Differ. Equations 38, No. 4--6, 575--607 (2013; Zbl 1332.35007) Full Text: DOI arXiv
Kenig, Carlos E. The concentration-compactness rigidity method for critical dispersive and wave equations. (English) Zbl 1284.35289 Cabré, Xavier (ed.) et al., Nonlinear partial differential equations. Lecture notes from the school on topics in PDE’s and applications, Granada and Barcelona, Spain, 2008. Basel: Birkhäuser (ISBN 978-3-0348-0190-4/pbk; 978-3-0348-0191-1/ebook). Advanced Courses in Mathematics - CRM Barcelona, 117-149 (2012). Reviewer: Satyanad Kichenassamy (Reims) MSC: 35L71 35B44 PDF BibTeX XML Cite \textit{C. E. Kenig}, in: Nonlinear partial differential equations. Lecture notes from the school on topics in PDE's and applications, Granada and Barcelona, Spain, 2008. Basel: Birkhäuser. 117--149 (2012; Zbl 1284.35289) Full Text: DOI
Duyckaerts, Thomas; Kenig, Carlos E.; Merle, Frank Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case. (English) Zbl 1282.35088 J. Eur. Math. Soc. (JEMS) 14, No. 5, 1389-1454 (2012). Reviewer: Marcelo M. Cavalcanti (Maringá) MSC: 35B44 35L71 35B33 PDF BibTeX XML Cite \textit{T. Duyckaerts} et al., J. Eur. Math. Soc. (JEMS) 14, No. 5, 1389--1454 (2012; Zbl 1282.35088) Full Text: DOI arXiv
Kenig, Carlos Critical non-linear dispersive equations: global existence, scattering, blow-up and universal profiles. (English) Zbl 1270.35071 Jpn. J. Math. (3) 6, No. 2, 121-141 (2011). Reviewer: Dmitry Pelinovsky (Hamilton) MSC: 35B33 35L52 35Q53 35Q55 35B44 PDF BibTeX XML Cite \textit{C. Kenig}, Jpn. J. Math. (3) 6, No. 2, 121--141 (2011; Zbl 1270.35071) Full Text: DOI
Duyckaerts, Thomas; Kenig, Carlos; Merle, Frank Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation. (English) Zbl 1230.35067 J. Eur. Math. Soc. (JEMS) 13, No. 3, 533-599 (2011). Reviewer: Pavol Quittner (Bratislava) MSC: 35L71 35B44 PDF BibTeX XML Cite \textit{T. Duyckaerts} et al., J. Eur. Math. Soc. (JEMS) 13, No. 3, 533--599 (2011; Zbl 1230.35067) Full Text: DOI arXiv
Li, Dong; Zhang, Xiaoyi Dynamics for the energy critical nonlinear wave equation in high dimensions. (English) Zbl 1221.35248 Trans. Am. Math. Soc. 363, No. 3, 1137-1160 (2011). Reviewer: Marie Kopáčková (Praha) MSC: 35L71 35L15 35B33 35B40 35B44 PDF BibTeX XML Cite \textit{D. Li} and \textit{X. Zhang}, Trans. Am. Math. Soc. 363, No. 3, 1137--1160 (2011; Zbl 1221.35248) Full Text: DOI arXiv
Ibrahim, S.; Jrad, R. Strichartz type estimates and the well-posedness of an energy critical 2D wave equation in a bounded domain. (English) Zbl 1218.35146 J. Differ. Equations 250, No. 9, 3740-3771 (2011). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 35L71 35L20 35A01 35B45 PDF BibTeX XML Cite \textit{S. Ibrahim} and \textit{R. Jrad}, J. Differ. Equations 250, No. 9, 3740--3771 (2011; Zbl 1218.35146) Full Text: DOI arXiv
Cao, Yang; Yin, Jingxue; Liu, Qiang; Li, Meihui A class of nonlinear parabolic-hyperbolic equations applied to image restoration. (English) Zbl 1180.35378 Nonlinear Anal., Real World Appl. 11, No. 1, 253-261 (2010). MSC: 35M13 94A08 35L72 68U10 PDF BibTeX XML Cite \textit{Y. Cao} et al., Nonlinear Anal., Real World Appl. 11, No. 1, 253--261 (2010; Zbl 1180.35378) Full Text: DOI
Ibrahim, Slim; Majdoub, Mohamed; Masmoudi, Nader; Nakanishi, Kenji Scattering for the two-dimensional energy-critical wave equation. (English) Zbl 1206.35175 Duke Math. J. 150, No. 2, 287-329 (2009). Reviewer: Dimitar A. Kolev (Sofia) MSC: 35L71 81Q05 35Q55 35B40 35B33 37K05 37L50 PDF BibTeX XML Cite \textit{S. Ibrahim} et al., Duke Math. J. 150, No. 2, 287--329 (2009; Zbl 1206.35175) Full Text: DOI arXiv
Carles, Rémi; Gallagher, Isabelle Analyticity of the scattering operator for semilinear dispersive equations. (English) Zbl 1173.35677 Commun. Math. Phys. 286, No. 3, 1181-1209 (2009). MSC: 35Q55 35Q53 35L70 35P25 37K35 81U40 PDF BibTeX XML Cite \textit{R. Carles} and \textit{I. Gallagher}, Commun. Math. Phys. 286, No. 3, 1181--1209 (2009; Zbl 1173.35677) Full Text: DOI arXiv
Kenig, Carlos E.; Merle, Frank Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. (English) Zbl 1183.35202 Acta Math. 201, No. 2, 147-212 (2008). Reviewer: Marie Kopáčková (Praha) MSC: 35L71 35L15 35B44 35A01 PDF BibTeX XML Cite \textit{C. E. Kenig} and \textit{F. Merle}, Acta Math. 201, No. 2, 147--212 (2008; Zbl 1183.35202) Full Text: DOI arXiv
Tao, Terence Global regularity for a logarithmically supercritical defocusing nonlinear wave equation for spherically symmetric data. (English) Zbl 1124.35043 J. Hyperbolic Differ. Equ. 4, No. 2, 259-265 (2007). Reviewer: Petar Popivanov (Sofia) MSC: 35L70 35L15 PDF BibTeX XML Cite \textit{T. Tao}, J. Hyperbolic Differ. Equ. 4, No. 2, 259--265 (2007; Zbl 1124.35043) Full Text: DOI arXiv
Ibrahim, Slim; Majdoub, Mohamed; Masmoudi, Nader Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity. (English) Zbl 1117.35049 Commun. Pure Appl. Math. 59, No. 11, 1639-1658 (2006). Reviewer: Petar Popivanov (Sofia) MSC: 35L70 35L15 35L65 PDF BibTeX XML Cite \textit{S. Ibrahim} et al., Commun. Pure Appl. Math. 59, No. 11, 1639--1658 (2006; Zbl 1117.35049) Full Text: DOI
Xu, Ning; Yin, Huicheng Global singularity structures of weak solutions to 4- semilinear dispersive wave equations. (English) Zbl 1082.35110 Math. Z. 252, No. 2, 231-249 (2006). Reviewer: Marie Kopáčková (Praha) MSC: 35L70 35L15 35B65 35A21 PDF BibTeX XML Cite \textit{N. Xu} and \textit{H. Yin}, Math. Z. 252, No. 2, 231--249 (2006; Zbl 1082.35110) Full Text: DOI
Xu, Ning; Yin, Huicheng On the singularities of solutions to 4D semilinear dispersive wave equations. (English) Zbl 1092.35066 Anal. Theory Appl. 21, No. 2, 176-187 (2005). Reviewer: Marie Kopáčková (Praha) MSC: 35L70 35A20 35L15 PDF BibTeX XML Cite \textit{N. Xu} and \textit{H. Yin}, Anal. Theory Appl. 21, No. 2, 176--187 (2005; Zbl 1092.35066) Full Text: DOI
Klainerman, Sergiu; Selberg, Sigmund Bilinear estimates and applications to nonlinear wave equations. (English) Zbl 1146.35389 Commun. Contemp. Math. 4, No. 2, 223-295 (2002). MSC: 35L70 35-02 35B30 35L30 PDF BibTeX XML Cite \textit{S. Klainerman} and \textit{S. Selberg}, Commun. Contemp. Math. 4, No. 2, 223--295 (2002; Zbl 1146.35389) Full Text: DOI arXiv
D’Ancona, Piero; Di Giuseppe, Alessandra Global existence with large data for a nonlinear weakly hyperbolic equation. (English) Zbl 0994.35093 Math. Nachr. 231, 5-23 (2001). Reviewer: Dimitar A.Kolev (Sofia) MSC: 35L70 35L15 PDF BibTeX XML Cite \textit{P. D'Ancona} and \textit{A. Di Giuseppe}, Math. Nachr. 231, 5--23 (2001; Zbl 0994.35093) Full Text: DOI
Nakamura, M.; Ozawa, T. The Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space. (English) Zbl 0960.35066 Ann. Inst. Henri Poincaré, Phys. Théor. 71, No. 2, 199-215 (1999). Reviewer: H.Tanabe (Toyonaka) MSC: 35L70 35L15 35L05 PDF BibTeX XML Cite \textit{M. Nakamura} and \textit{T. Ozawa}, Ann. Inst. Henri Poincaré, Phys. Théor. 71, No. 2, 199--215 (1999; Zbl 0960.35066) Full Text: Numdam EuDML
Struwe, Michael Uniqueness for critical nonlinear wave equations and wave maps via the energy inequality. (English) Zbl 0933.35141 Commun. Pure Appl. Math. 52, No. 9, 1179-1188 (1999). Reviewer: Michael Struwe MSC: 35L70 35L15 PDF BibTeX XML Cite \textit{M. Struwe}, Commun. Pure Appl. Math. 52, No. 9, 1179--1188 (1999; Zbl 0933.35141) Full Text: DOI
Nakanishi, Kenji Unique global existence and asymptotic behaviour of solutions for wave equations with non-coercive critical nonlinearity. (English) Zbl 0926.35022 Commun. Partial Differ. Equations 24, No. 1-2, 185-221 (1999). Reviewer: Vadim Komkov (Florida) MSC: 35B40 35L70 35L15 PDF BibTeX XML Cite \textit{K. Nakanishi}, Commun. Partial Differ. Equations 24, No. 1--2, 185--221 (1999; Zbl 0926.35022) Full Text: DOI
Montgomery-Smith, S. J. Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equations. (English) Zbl 0955.35012 Duke Math. J. 91, No. 2, 393-408 (1998). Reviewer: K.Kajitani (Ibaraki) MSC: 35B45 35G10 35B05 35L05 PDF BibTeX XML Cite \textit{S. J. Montgomery-Smith}, Duke Math. J. 91, No. 2, 393--408 (1998; Zbl 0955.35012) Full Text: DOI arXiv
Kapitanski, Lev Weak and yet weaker solutions of semilinear wave equations. (English) Zbl 0831.35109 Commun. Partial Differ. Equations 19, No. 9-10, 1629-1676 (1994). Reviewer: S.A.Spagnolo (Pisa) MSC: 35L70 35L15 35D05 PDF BibTeX XML Cite \textit{L. Kapitanski}, Commun. Partial Differ. Equations 19, No. 9--10, 1629--1676 (1994; Zbl 0831.35109) Full Text: DOI