×

Numerical solutions of Burgers-Huxley equation by exact finite difference and NSFD schemes. (English) Zbl 1476.65201

Summary: In this paper, numerical solution of the Burgers-Huxley (BH) equation is presented based on the nonstandard finite difference (NSFD) scheme. At first, two exact finite difference schemes for BH equation obtained. Moreover an NSFD scheme is presented for this equation. The positivity, boundedness and local truncation error of the scheme are discussed. Finally, the numerical results of the proposed method with those of some available methods compared.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A.J. Arenas, G. Gonzalez-Parra, and B.M. Chen-Charpentier, A nonstandard numerical scheme of predictor-corrector type for epidemic models, Comput. Math. Appl. 59(12) (2010), pp. 3740-3749. · Zbl 1198.65116 · doi:10.1016/j.camwa.2010.04.006
[2] B. Batiha, M.S.M. Noorani, and I. Hashim, Numerical simulation of the generalized Huxley equation by He’s variational iteration method, Appl. Math. Comput. 186(2) (2007), pp. 1322-1325. · Zbl 1118.65367 · doi:10.1016/j.amc.2006.07.166
[3] B. Batiha, M.S.M. Noorani, and I. Hashim, Application of variational iteration method to the generalized Burgers-Huxley equation, Chaos Solitons Fractals 36(3) (2008), pp. 660-663. · Zbl 1141.49006 · doi:10.1016/j.chaos.2006.06.080
[4] J. Biazar and F. Mohammadi, Application of differential transform method to the generalized Burgers-Huxley equation, Appl. Appl. Math. 5(10) (2010), pp. 1726-1740. · Zbl 1205.65284
[5] M.T. Darvishi, S. Kheybari, and F. Khani, Spectral collocation method and Darvishi’s preconditionings to solve the generalized Burgers-Huxley equation, Commun. Nonlinear Sci. Numer. Simul. 13(10) (2008), pp. 2091-2103. · Zbl 1221.65261 · doi:10.1016/j.cnsns.2007.05.023
[6] U. Erdogan and T. Ozis, A smart nonstandard finite difference scheme for second order nonlinear boundary value problems, J. Comput. Phys. 230(17) (2011), pp. 6464-6474. · Zbl 1269.65071 · doi:10.1016/j.jcp.2011.04.033
[7] P.G. Estevez, Non-classical symmetries and the singular manifold method: The Burgers and the Burgers-Huxley equations, J. Phys. A 27(6) (1994), pp. 2113-2127. · Zbl 0838.35114 · doi:10.1088/0305-4470/27/6/033
[8] R. Fitzhugh, Impulse and physiological states in models of nerve membrane, Biophys. J. 1(6) (1961), pp. 445-466. · doi:10.1016/S0006-3495(61)86902-6
[9] G. Gonzalez-Parra, A.J. Arenas, and B.M. Chen-Charpentier, Combination of nonstandard schemes and Richardsons extrapolation to improve the numerical solution of population models, Math. Comput. Model. 52(7-8) (2010), pp. 1030-1036. · Zbl 1205.65015 · doi:10.1016/j.mcm.2010.03.015
[10] I. Hashim, M.S.M. Noorani, and B. Batiha, A note on the Adomian decomposition method for the generalized Huxley equation, Appl. Math. Comput. 181(2) (2006), pp. 1439-1445. · Zbl 1173.65340 · doi:10.1016/j.amc.2006.03.011
[11] I. Hashim, M.S.M. Noorani, and M.R. Said Al-Hadidi, Solving the generalized Burgers-Huxley equation using the Adomian decomposition method, Math. Comput. Model. 43(11-12) (2006), pp. 1404-1411. · Zbl 1133.65083 · doi:10.1016/j.mcm.2005.08.017
[12] H.N.A. Ismail, K. Raslan, and A.A. Abd, Rabboh, Adomian decomposition method for Burger’s-Huxley and Burger’s-Fisher equations, Appl. Math. Comput. 159(1) (2004), pp. 291-301. · Zbl 1062.65110 · doi:10.1016/j.amc.2003.10.050
[13] M. Javidi, A numerical solution of the generalized Burgers-Huxley equation by spectral collocation method, Appl. Math. Comput. 178(2) (2006), pp. 338-344. · Zbl 1100.65081 · doi:10.1016/j.amc.2005.11.051
[14] P.M. Jordan, A nonstandard finite difference scheme for nonlinear heat transfer in a thin finite rod, J. Differ. Equ. Appl. 9(11) (2003), pp. 1015-1021. · Zbl 1037.65085
[15] R.E. Mickens, Advances in the Applications of Nonstandard Finite Difference Schemes, Wiley-Interscience, Singapore, 2005. · Zbl 1079.65005 · doi:10.1142/5884
[16] R.E. Mickens, Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition, Numer. Methods Partial Differ. Equ. 23(3) (2007), pp. 672-691. · Zbl 1114.65094 · doi:10.1002/num.20198
[17] R.C. Mittal and R. Jiwari, A numerical study of Burger-Huxley equation by differential quadrature method, Int. J. Appl. Math. Mech 5 (2009), pp. 1-9.
[18] A. Molabahramia and F. Khani, The homotopy analysis method to solve the Burgers-Huxley equation, Nonlinear Anal. Real World Appl. 10(2) (2009), pp. 589-600. · Zbl 1167.35483 · doi:10.1016/j.nonrwa.2007.10.014
[19] J.S. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE 50(10) (1962), pp. 2061-2071. · doi:10.1109/JRPROC.1962.288235
[20] L.I.W. Roeger, Exact finite-difference schemes for twodimensional linear systems with constant coefficients, J. Comput. Appl. Math. 219 (2008), pp. 102-109. · Zbl 1151.65066 · doi:10.1016/j.cam.2007.07.015
[21] L.I.W. Roeger, Exact nonstandard finite-difference methods for a linear system the case of centers, J. Differ. Equ. Appl. 14(4) (2008), pp. 381-389. · Zbl 1138.65055
[22] L.I.W. Roeger and R.E. Mickens, Exact finite-difference schemes for first order differential equations having three distinct fixed-points, J. Differ. Equ. Appl. 13(12) (2007), pp. 1179-1185. · Zbl 1131.65061
[23] S. Rucker, Exact finite difference scheme for an advectionreaction equation, J. Differ. Equ. Appl. 9(11) (2003), pp. 1007-1013. · Zbl 1040.65077
[24] S. Tomasiello, Numerical solutions of the Burgers-Huxley equation by the IDQ method, Int. J. Comput. Math. 87 (2010), pp. 129-140. · Zbl 1182.65162
[25] X.Y. Wang, Z.S. Zhu, and Y.K. Lu, Solitary wave solutions of the generalised Burgers-Huxley equation, J. Phys. A 23(3) (1990), pp. 271-274. · Zbl 0708.35079 · doi:10.1088/0305-4470/23/3/011
[26] A.M. Wazwaz and A. Gorguis, An analytic study of Fisher’s equation by using adomian decomposition method, Appl. Math. Comput. 154(3) (2004), pp. 609-620. · Zbl 1054.65107 · doi:10.1016/S0096-3003(03)00738-0
[27] M.R. Yaghouti and A. Zabihi, Application of Laplace decomposition method for Burgers-Huxley and Burgers-Fisher equations, J. Math. Model. 1(1) (2013), pp. 41-67. · Zbl 1291.65069
[28] S. Zibaei and M. Namjoo, A NSFD scheme for Lotka-Volterra food web model, Iran. J. Sci. Technol. Trans. A Sci. 38(4) (2014), pp. 399-414.
[29] S. Zibaei and M. Namjoo, A nonstandard finite difference scheme for solving fractional-order model of HIV-1 infection of CD \(4^+\) T-cells, Iran. J. Math. Chem. 6(2) (2015), pp. 145-160. · Zbl 1367.92069
[30] S. Zibaei and M. Namjoo, A nonstandard finite difference scheme for solving three-species food chain with fractional-order Lotka-Volterra model, Iran. J. Numer. Anal. Optim. 6(1) (2016), pp. 53-78. · Zbl 1343.65097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.