×

Finiteness of \(\pi _{1}\) and geometric inequalities in almost positive Ricci curvature. (English) Zbl 1141.53034

This paper shows boundedness of the diameter and finiteness of the fundamental group of a complete \(n\)-manifold under a global \(L^p\)-control of the Ricci curvature for \(p > n/2\). It is a generalization of the S. B. Myers theorem [Duke Math. J. 8, 401–404 (1941; Zbl 0025.22704)] without unnatural extra hypotheses. It is also shown that metrics with similar \(L^{n/2}\)-control of their Ricci curvature are dense in the set of complete metrics of any compact differentiable manifold by considering the Gromov-Hausdorff distance.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
58D17 Manifolds of metrics (especially Riemannian)

Citations:

Zbl 0025.22704
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] Ambrose W. , A theorem of Myers , Duke Math. J. 24 ( 1957 ) 345 - 348 . Article | MR 89464 | Zbl 0078.14204 · Zbl 0078.14204 · doi:10.1215/S0012-7094-57-02440-7
[2] Aubry E. , Variétés de courbure de Ricci presque minorée : inégalités géométriques optimales et stabilité des variétés extrémales, Thèse, Institut Fourier, Grenoble (2003).
[3] Avez A. , Riemannian manifolds with non-negative Ricci curvature , Duke Math. J. 39 ( 1972 ) 55 - 64 . Article | MR 290286 | Zbl 0251.53017 · Zbl 0251.53017 · doi:10.1215/S0012-7094-72-03908-7
[4] Bakry D. , Ledoux M. , Sobolev inequalities and Myers’ diameter theorem for an abstract Markov generator , Duke Math. J. ( 1996 ) 253 - 270 . Article | MR 1412446 | Zbl 0870.60071 · Zbl 0870.60071 · doi:10.1215/S0012-7094-96-08511-7
[5] Calabi E. , On Ricci curvature and geodesics , Duke Math. J. 34 ( 1967 ) 667 - 676 . Article | MR 216429 | Zbl 0153.51501 · Zbl 0153.51501 · doi:10.1215/S0012-7094-67-03469-2
[6] Cheeger J. , Degeneration of Riemannian metrics under Ricci curvature bounds, Piza (2001). MR 2006642 | Zbl 1055.53024 · Zbl 1055.53024
[7] Elworthy K. , Rosenberg S. , Manifolds with Wells of negative Curvature , Invent. Math. 103 ( 1991 ) 471 - 495 . MR 1091615 | Zbl 0722.53033 · Zbl 0722.53033 · doi:10.1007/BF01239523
[8] Gallot S. , Isoperimetric inequalities based on integral norms of the Ricci curvature , Astérisque 157-158 ( 1988 ) 191 - 216 . Zbl 0665.53041 · Zbl 0665.53041
[9] Gromov M. , Metric Structures for Riemannian and Non-Riemannian Spaces , Progress in Mathematics , vol. 152 , Birkhäuser , Boston , 1999 . MR 1699320 | Zbl 0953.53002 · Zbl 0953.53002
[10] Galloway G. , A generalization of Myers theorem and an application to relativistic cosmology , J. Diff. Geom. 14 ( 1979 ) 105 - 116 . MR 577883 | Zbl 0444.53036 · Zbl 0444.53036
[11] Lohkamp J. , Curvature h-principles , Ann. of Math. 142 ( 1995 ) 457 - 498 . MR 1356779 | Zbl 0909.58005 · Zbl 0909.58005 · doi:10.2307/2118552
[12] Markvorsen S. , A Ricci curvature criterion for compactness of Riemannian manifolds , Arch. Math. 39 ( 1982 ) 85 - 91 . MR 674537 | Zbl 0497.53046 · Zbl 0497.53046 · doi:10.1007/BF01899248
[13] Myers S. , Riemannian manifolds with positive mean curvature , Duke Math. J. ( 1941 ) 401 - 404 . Article | MR 4518 | Zbl 0025.22704 · Zbl 0025.22704 · doi:10.1215/S0012-7094-41-00832-3
[14] Petersen P. , Sprouse C. , Integral curvature bounds, distance estimates and applications , J. Diff. Geom. 50 ( 1998 ) 269 - 298 . MR 1684981 | Zbl 0969.53017 · Zbl 0969.53017
[15] Petersen P. , Wei G. , Relative volume comparison with integral curvature bounds , Geom. Funct. Anal. 7 ( 1997 ) 1031 - 1045 . MR 1487753 | Zbl 0910.53029 · Zbl 0910.53029 · doi:10.1007/s000390050036
[16] Petersen P. , Wei G. , Analysis and geometry on manifolds with integral curvature bounds. II , Trans. AMS 353 ( 2 ) ( 2000 ) 457 - 478 . Zbl 0999.53030 · Zbl 0999.53030 · doi:10.1090/S0002-9947-00-02621-0
[17] Rosenberg S. , Yang D. , Bounds on the fundamental group of a manifold with almost non-negative Ricci curvature , J. Math. Soc. Japan 46 ( 1994 ) 267 - 287 . Article | MR 1264942 | Zbl 0818.53058 · Zbl 0818.53058 · doi:10.2969/jmsj/04620267
[18] Sakai T. , Riemannian Geometry , Amer. Math. Soc. , Providence, Rhode Island , 1996 . Zbl 0886.53002 · Zbl 0886.53002
[19] Sprouse C. , Integral curvature bounds and bounded diameter , Comm. Anal. Geom. 8 ( 2000 ) 531 - 543 . MR 1775137 | Zbl 0984.53018 · Zbl 0984.53018
[20] Wu J. , Complete manifolds with a little negative curvature , Am. J. Math. 113 ( 1991 ) 567 - 572 . MR 1118454 | Zbl 0744.53028 · Zbl 0744.53028 · doi:10.2307/2374840
[21] Yang D. , Convergence of Riemannian manifolds with integral bounds on curvature I , Ann. Sci. Éc. Norm. Sup. 25 ( 1992 ) 77 - 105 . Numdam | MR 1152614 | Zbl 0748.53025 · Zbl 0748.53025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.