×

Efficient upper and lower bounds for global mixed-integer optimal control. (English) Zbl 1323.49018

Minimization of the energy consumption of an electric car performing a displacement is formulated as a Mixed-Integer Optimal Control Problem (MIOCP). Global solutions are computed by a combination of several methods. An outer convexification with a direct or an indirect approach is applied to find an upper bound. A lower bound is obtained by applying the method of moments. Numerical results on several instances of the problem are discussed for all presented algorithms.

MSC:

49M25 Discrete approximations in optimal control
49K15 Optimality conditions for problems involving ordinary differential equations
90C11 Mixed integer programming
49N90 Applications of optimal control and differential games
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ascher, U., Mattheij, R., Russell, R.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM, Philadelphia (1995) · Zbl 0843.65054 · doi:10.1137/1.9781611971231
[2] Bemporad, A., Borodani, P., Mannelli, M.: Hybrid control of an automotive robotized gearbox for reduction of consumptions and emissions. In: Hybrid Systems: Computation and Control, Springer Lecture Notes in Computer Science, vol. 2623/2003, pp. 81-96. Springer, Heidelberg (2003). doi:10.1007/3-540-36580-X_9 · Zbl 1032.93547
[3] Betts, J.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM, Philadelphia (2001) · Zbl 0995.49017
[4] Biegler, L.: Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation. Comput. Chem. Eng. 8, 243-248 (1984) · doi:10.1016/0098-1354(84)87012-X
[5] Biegler, L.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. Series on Optimization. SIAM, Philadelphia (2010) · Zbl 1207.90004 · doi:10.1137/1.9780898719383
[6] Bock, H., Longman, R.: Optimal control of velocity profiles for minimization of energy consumption in the New York subway system. In: Proceedings of the Second IFAC Workshop on Control Applications of Nonlinear Programming and Optimization, pp. 34-43. International Federation of Automatic, Control (1980) · Zbl 0177.20402
[7] Bock, H., Longman, R.: Computation of optimal controls on disjoint control sets for minimum energy subway operation. In: Proceedings of the American Astronomical Society. Symposium on Engineering Science and Mechanics. Taiwan (1982) · Zbl 0699.49003
[8] Bock, H., Plitt, K.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings of the 9th IFAC World Congress, pp. 242-247. Pergamon Press, Budapest (1984)
[9] Borrelli, F., Bemporad, A., Fodor, M., Hrovat, D.: An MPC/hybrid system approach to traction control. IEEE Trans. Control Syst. Technol. 14(3), 541-552 (2006). doi:10.1109/TCST.2005.860527 · doi:10.1109/TCST.2005.860527
[10] Borrelli, F., Falcone, P., Keviczky, T., Asgari, J., Hrovat, D.: MPC-based approach to active steering for autonomous vehicle systems. Int. J. Veh. Auton. Syst. 3(2-4), 265-291 (2005) · doi:10.1504/IJVAS.2005.008237
[11] Bulirsch, R.: Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung. Tech. rep, Carl-Cranz-Gesellschaft, Oberpfaffenhofen (1971)
[12] Chachuat, B., Singer, A., Barton, P.: Global methods for dynamic optimization and mixed-integer dynamic optimization. Ind. Eng. Chem. Res. 45(25), 8373-8392 (2006) · Zbl 1035.81024 · doi:10.1021/ie0601605
[13] De Jager, B., Van Keulen, T., Kessels, J.: Optimal Control of Hybrid Vehicles. Advances in Industrial Control. Springer, London (2013)
[14] Gamkrelidze, R.: Principles of Optimal Control Theory. Plenum Press, Berlin (1978) · Zbl 0401.49001 · doi:10.1007/978-1-4684-7398-8
[15] Gerdts, M.: Solving mixed-integer optimal control problems by branch&bound: a case study from automobile test-driving with gear shift. Optim. Control Appl. Methods 26, 1-18 (2005) · doi:10.1002/oca.751
[16] Gerdts, M.: A variable time transformation method for mixed-integer optimal control problems. Optim. Control Appl. Methods 27(3), 169-182 (2006) · doi:10.1002/oca.778
[17] Gerdts, M.; Sager, S.; Biegler, L. (ed.); Campbell, S. (ed.); Mehrmann, V. (ed.), Mixed-integer DAE Optimal control problems: necessary conditions and bounds, 189-212 (2012), Philadelphia · Zbl 1317.90323 · doi:10.1137/9781611972252.ch9
[18] Hellström, E., Ivarsson, M., Aslund, J., Nielsen, L.: Look-ahead control for heavy trucks to minimize trip time and fuel consumption. Control Eng. Pract. 17, 245-254 (2009) · doi:10.1016/j.conengprac.2008.07.005
[19] Henrion, D., Daafouz, J., Claeys, M.: Optimal switching control design for polynomial systems: an LMI approach. In: 2013 Conference on Decision and Control. Florence, Italy (2013). Accepted for publication
[20] Henrion, D., Lasserre, J.B., Löfberg, J.: Gloptipoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24(4-5), 761-779 (2009) · Zbl 1178.90277 · doi:10.1080/10556780802699201
[21] Jansson, C.: VSDP: a Matlab software package for verified semidefinite programming. Nonlinear Theory and its Applications pp. 327-330 (2006)
[22] Jung, M., Reinelt, G., Sager, S.: The Lagrangian Relaxation for the Combinatorial Integral Approximation Problem. Optimization Methods and Software (2014). (Accepted) · Zbl 1325.49028
[23] Kim, T.S., Manzie, C., Sharma, R.: Model predictive control of velocity and torque split in a parallel hybrid vehicle. In: Proceedings of the 2009 IEEE International Conference on Systems. Man and Cybernetics, SMC’09, pp. 2014-2019. IEEE Press, Piscataway, NJ (2009)
[24] Kirches, C., Bock, H., Schlöder, J., Sager, S.: Mixed-integer NMPC for predictive cruise control of heavy-duty trucks. In: European Control Conference, pp. 4118-4123. Zurich, Switzerland (2013)
[25] Kirches, C., Sager, S., Bock, H., Schlöder, J.: Time-optimal control of automobile test drives with gear shifts. Optim. Control Appl. Methods 31(2), 137-153 (2010) · Zbl 1204.49033 · doi:10.1002/oca.892
[26] Lasserre, J.B.: Positive Polynomials and Their Applications. Imperial College Press, London (2009)
[27] Lasserre, J.B., Henrion, D., Prieur, C., Trélat, E.: Nonlinear optimal control via occupation measures and LMI-relaxations. SIAM J. Control Optim. 47(4), 1643-1666 (2008) · Zbl 1188.90193 · doi:10.1137/070685051
[28] Lee, H., Teo, K., Jennings, L., Rehbock, V.: Control parametrization enhancing technique for optimal discrete-valued control problems. Automatica 35(8), 1401-1407 (1999) · Zbl 0942.93025 · doi:10.1016/S0005-1098(99)00050-3
[29] Leineweber, D.: Efficient reduced SQP methods for the optimization of chemical processes described by large sparse DAE models, Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik, vol. 613. VDI Verlag, Düsseldorf (1999) · Zbl 0997.65502
[30] Leineweber, D., Bauer, I., Bock, H., Schlöder, J.: An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part I: theoretical aspects. Comput. Chem. Eng. 27, 157-166 (2003) · doi:10.1016/S0098-1354(02)00158-8
[31] McShane, E.: The calculus of variations from the beginning to optimal control theory. SIAM J. Control Optim. 27(5), 916-939 (1989) · Zbl 0699.49003 · doi:10.1137/0327049
[32] Merakeb, K., Messine, F., Aïdène, M.: A branch and bound algorithm for minimizing the energy consumption of an electrical vehicle. 4OR (2013, available online) · Zbl 1304.49066
[33] Osborne, M.: On shooting methods for boundary value problems. J. Math. Anal. Appl. 27, 417-433 (1969) · Zbl 0177.20402 · doi:10.1016/0022-247X(69)90059-6
[34] Royden, H., Fitzpatrick, P.: Real Analysis. Prentice Hall, Upper Saddle River (2010) · Zbl 1191.26002
[35] Sager, S.: Numerical methods for mixed-integer optimal control problems. Der andere Verlag, Tönning, Lübeck, Marburg (2005). ISBN 3-89959-416-9 · Zbl 1094.65512
[36] Sager, S.: Reformulations and algorithms for the optimization of switching decisions in nonlinear optimal control. J. Process Control 19(8), 1238-1247 (2009) · doi:10.1016/j.jprocont.2009.03.008
[37] Sager, S., Bock, H., Diehl, M.: The integer approximation error in mixed-integer optimal control. Math. Program. A 133(1-2), 1-23 (2012) · Zbl 1259.90077 · doi:10.1007/s10107-010-0405-3
[38] Sager, S., Jung, M., Kirches, C.: Combinatorial integral approximation. Math. Methods Oper. Res. 73(3), 363-380 (2011). doi:10.1007/s00186-011-0355-4 · Zbl 1220.90073 · doi:10.1007/s00186-011-0355-4
[39] Sager, S., Reinelt, G., Bock, H.: Direct methods with maximal lower bound for mixed-integer optimal control problems. Math. Program. 118(1), 109-149 (2009) · Zbl 1160.49032 · doi:10.1007/s10107-007-0185-6
[40] Sargent, R.; Sullivan, G.; Stoer, J. (ed.), The development of an efficient optimal control package (1978), Heidelberg · Zbl 0385.49018
[41] Sciarretta, A., Guzzella, L.: Control of hybrid electric vehicles. IEEE Control Syst. 27(2), 60-70 (2007) · doi:10.1109/MCS.2007.338280
[42] Scott, J.K., Chachuat, B., Barton, P.I.: Nonlinear convex and concave relaxations for the solutions of parametric ODEs. Optim. Control Appl. Methods 34, 145-163 (2013). doi:10.1002/oca.2014 · Zbl 1273.93089 · doi:10.1002/oca.2014
[43] Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11-12, 625-653 (1999) · Zbl 0973.90526 · doi:10.1080/10556789908805766
[44] Tauchnitz, N.: Das Pontrjaginsche Maximumprinzip für eine Klasse hybrider Steuerungsprobleme mit Zustandsbeschränkungen und seine Anwendung. Ph.D. thesis, BTU Cottbus (2010)
[45] Terwen, S., Back, M., Krebs, V.: Predictive powertrain control for heavy duty trucks. In: Proceedings of IFAC Symposium in Advances in Automotive Control, pp. 451-457. Salerno, Italy (2004)
[46] van Keulen, T., van Mullem, D., de Jager, B., Kessels, J.T.B.A., Steinbuch, M.: Design, implementation, and experimental validation of optimal power split control for hybrid electric trucks. Control Eng. Pract. 20(5), 547-558 (2012) · doi:10.1016/j.conengprac.2012.01.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.