Han, Bui Thi Ngoc; Linh, Nguyen Thi The generalized nonlocal boundary condition for fractional Langevin equation with a weakly singular source. (English) Zbl 07639784 Rocky Mt. J. Math. 52, No. 6, 1983-2002 (2022). MSC: 34-XX 26A33 34A08 34A12 PDF BibTeX XML Cite \textit{B. T. N. Han} and \textit{N. T. Linh}, Rocky Mt. J. Math. 52, No. 6, 1983--2002 (2022; Zbl 07639784) Full Text: DOI Link OpenURL
Chen, Le; Hu, Guannan Hölder regularity for the nonlinear stochastic time-fractional slow & fast diffusion equations on \({\mathbb{R}}^d\). (English) Zbl 1503.60080 Fract. Calc. Appl. Anal. 25, No. 2, 608-629 (2022). MSC: 60H15 60G60 26A33 35R11 35R60 PDF BibTeX XML Cite \textit{L. Chen} and \textit{G. Hu}, Fract. Calc. Appl. Anal. 25, No. 2, 608--629 (2022; Zbl 1503.60080) Full Text: DOI OpenURL
Dien, Nguyen Minh On mild solutions of the generalized nonlinear fractional pseudo-parabolic equation with a nonlocal condition. (English) Zbl 1503.35254 Fract. Calc. Appl. Anal. 25, No. 2, 559-583 (2022). MSC: 35R11 35K70 35S10 35B30 26A33 PDF BibTeX XML Cite \textit{N. M. Dien}, Fract. Calc. Appl. Anal. 25, No. 2, 559--583 (2022; Zbl 1503.35254) Full Text: DOI OpenURL
Fouladi, Somayeh; Dahaghin, Mohammad Shafi Numerical investigation of the variable-order fractional Sobolev equation with non-singular Mittag-Leffler kernel by finite difference and local discontinuous Galerkin methods. (English) Zbl 1498.65157 Chaos Solitons Fractals 157, Article ID 111915, 10 p. (2022). MSC: 65M60 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{S. Fouladi} and \textit{M. S. Dahaghin}, Chaos Solitons Fractals 157, Article ID 111915, 10 p. (2022; Zbl 1498.65157) Full Text: DOI OpenURL
Jung, Jinwook; Kuchling, Peter Emergent dynamics of the fractional Cucker-Smale model under general network topologies. (English) Zbl 1498.93025 Commun. Pure Appl. Anal. 21, No. 8, 2831-2856 (2022). MSC: 93A16 93B70 26A33 PDF BibTeX XML Cite \textit{J. Jung} and \textit{P. Kuchling}, Commun. Pure Appl. Anal. 21, No. 8, 2831--2856 (2022; Zbl 1498.93025) Full Text: DOI OpenURL
Nguyen Minh Dien; Tran Quoc Viet On mild solutions of the p-Laplacian fractional Langevin equations with anti-periodic type boundary conditions. (English) Zbl 07579664 Int. J. Comput. Math. 99, No. 9, 1823-1848 (2022). MSC: 34A08 26A33 34A12 PDF BibTeX XML Cite \textit{Nguyen Minh Dien} and \textit{Tran Quoc Viet}, Int. J. Comput. Math. 99, No. 9, 1823--1848 (2022; Zbl 07579664) Full Text: DOI OpenURL
Jin, Bangti; Kian, Yavar Recovery of the order of derivation for fractional diffusion equations in an unknown medium. (English) Zbl 1492.35426 SIAM J. Appl. Math. 82, No. 3, 1045-1067 (2022). MSC: 35R30 35R11 35K20 PDF BibTeX XML Cite \textit{B. Jin} and \textit{Y. Kian}, SIAM J. Appl. Math. 82, No. 3, 1045--1067 (2022; Zbl 1492.35426) Full Text: DOI arXiv OpenURL
Simon, Thomas Remark on a Mittag-Leffler function of Le Roy type. (English) Zbl 1505.33011 Integral Transforms Spec. Funct. 33, No. 2, 108-114 (2022). MSC: 33E12 60E10 PDF BibTeX XML Cite \textit{T. Simon}, Integral Transforms Spec. Funct. 33, No. 2, 108--114 (2022; Zbl 1505.33011) Full Text: DOI arXiv OpenURL
Al-Refai, Mohammed; Aljarrah, Abdalla; Abdeljawad, Thabet Analysis of fractional differential equations with fractional derivative of generalized Mittag-Leffler kernel. (English) Zbl 1494.34009 Adv. Difference Equ. 2021, Paper No. 325, 10 p. (2021). MSC: 34A08 33E12 26A33 PDF BibTeX XML Cite \textit{M. Al-Refai} et al., Adv. Difference Equ. 2021, Paper No. 325, 10 p. (2021; Zbl 1494.34009) Full Text: DOI OpenURL
Ardjouni, Abdelouaheb; Djoudi, Ahcene Positive solutions for first-order nonlinear Caputo-Hadamard fractional relaxation differential equations. (English) Zbl 1499.34170 Kragujevac J. Math. 45, No. 6, 897-908 (2021). MSC: 34B18 34A08 34B08 34B10 47N20 PDF BibTeX XML Cite \textit{A. Ardjouni} and \textit{A. Djoudi}, Kragujevac J. Math. 45, No. 6, 897--908 (2021; Zbl 1499.34170) Full Text: DOI Link OpenURL
Li, Changpin; Li, Zhiqiang Asymptotic behaviours of solution to Caputo-Hadamard fractional partial differential equation with fractional Laplacian. (English) Zbl 1492.35414 Int. J. Comput. Math. 98, No. 2, 305-339 (2021). MSC: 35R11 26A33 35B40 PDF BibTeX XML Cite \textit{C. Li} and \textit{Z. Li}, Int. J. Comput. Math. 98, No. 2, 305--339 (2021; Zbl 1492.35414) Full Text: DOI OpenURL
Górska, Katarzyna; Horzela, Andrzej; Lattanzi, Ambra; Pogány, Tibor K. On complete monotonicity of three parameter Mittag-Leffler function. (English) Zbl 1499.33078 Appl. Anal. Discrete Math. 15, No. 1, 118-128 (2021). MSC: 33E12 26A48 33C60 PDF BibTeX XML Cite \textit{K. Górska} et al., Appl. Anal. Discrete Math. 15, No. 1, 118--128 (2021; Zbl 1499.33078) Full Text: DOI arXiv OpenURL
Hassouna, Meryeme; El Kinani, El Hassan; Ouhadan, Abdelaziz Global existence and uniqueness of solution of Atangana-Baleanu Caputo fractional differential equation with nonlinear term and approximate solutions. (English) Zbl 1486.34027 Int. J. Differ. Equ. 2021, Article ID 5675789, 11 p. (2021). MSC: 34A08 34A12 65L05 PDF BibTeX XML Cite \textit{M. Hassouna} et al., Int. J. Differ. Equ. 2021, Article ID 5675789, 11 p. (2021; Zbl 1486.34027) Full Text: DOI OpenURL
Al-Refai, Mohammed Maximum principles and applications for fractional differential equations with operators involving Mittag-Leffler function. (English) Zbl 1498.35125 Fract. Calc. Appl. Anal. 24, No. 4, 1220-1230 (2021). MSC: 35B50 35R11 26A33 33E12 PDF BibTeX XML Cite \textit{M. Al-Refai}, Fract. Calc. Appl. Anal. 24, No. 4, 1220--1230 (2021; Zbl 1498.35125) Full Text: DOI OpenURL
Liu, Jun; Jiang, Yao-Lin; Wang, Xiao-Long; Wang, Yan Waveform relaxation for fractional sub-diffusion equations. (English) Zbl 1469.35226 Numer. Algorithms 87, No. 4, 1445-1478 (2021). MSC: 35R11 35A35 35K57 35K20 65M15 PDF BibTeX XML Cite \textit{J. Liu} et al., Numer. Algorithms 87, No. 4, 1445--1478 (2021; Zbl 1469.35226) Full Text: DOI OpenURL
Jia, Jia; Zeng, Zhigang; Wang, Fei Pinning synchronization of fractional-order memristor-based neural networks with multiple time-varying delays via static or dynamic coupling. (English) Zbl 1455.93157 J. Franklin Inst. 358, No. 1, 895-933 (2021). MSC: 93D20 93B70 93C43 PDF BibTeX XML Cite \textit{J. Jia} et al., J. Franklin Inst. 358, No. 1, 895--933 (2021; Zbl 1455.93157) Full Text: DOI OpenURL
Doan, T. S.; Huong, P. T.; Kloeden, P. E.; Vu, A. M. Euler-Maruyama scheme for Caputo stochastic fractional differential equations. (English) Zbl 1455.60090 J. Comput. Appl. Math. 380, Article ID 112989, 14 p. (2020). MSC: 60H35 60H20 65C30 PDF BibTeX XML Cite \textit{T. S. Doan} et al., J. Comput. Appl. Math. 380, Article ID 112989, 14 p. (2020; Zbl 1455.60090) Full Text: DOI OpenURL
Chandhini, G.; Prashanthi, K. S.; Vijesh, V. Antony Direct and integrated radial functions based quasilinearization schemes for nonlinear fractional differential equations. (English) Zbl 1431.65120 BIT 60, No. 1, 31-65 (2020). MSC: 65L20 65L05 65L10 PDF BibTeX XML Cite \textit{G. Chandhini} et al., BIT 60, No. 1, 31--65 (2020; Zbl 1431.65120) Full Text: DOI OpenURL
Benyoub, Mohammed; Benaissa, Samir Monotone iterative method for weighted fractional differential equations in Banach space. (English) Zbl 1433.34009 Palest. J. Math. 9, No. 1, 118-125 (2020). MSC: 34A08 34A12 34A45 47N20 PDF BibTeX XML Cite \textit{M. Benyoub} and \textit{S. Benaissa}, Palest. J. Math. 9, No. 1, 118--125 (2020; Zbl 1433.34009) Full Text: Link OpenURL
Górska, Katarzyna; Horzela, Andrzej; Garrappa, Roberto Some results on the complete monotonicity of Mittag-Leffler functions of le Roy type. (English) Zbl 1478.33010 Fract. Calc. Appl. Anal. 22, No. 5, 1284-1306 (2019). Reviewer: Roberto Garra (Roma) MSC: 33E12 26A33 26A48 32A17 PDF BibTeX XML Cite \textit{K. Górska} et al., Fract. Calc. Appl. Anal. 22, No. 5, 1284--1306 (2019; Zbl 1478.33010) Full Text: DOI arXiv OpenURL
Chen, Le; Hu, Yaozhong; Nualart, David Nonlinear stochastic time-fractional slow and fast diffusion equations on \(\mathbb{R}^d\). (English) Zbl 1427.60119 Stochastic Processes Appl. 129, No. 12, 5073-5112 (2019). MSC: 60H15 60G60 35R60 PDF BibTeX XML Cite \textit{L. Chen} et al., Stochastic Processes Appl. 129, No. 12, 5073--5112 (2019; Zbl 1427.60119) Full Text: DOI arXiv OpenURL
Gambera, Laura R.; Lizama, Carlos; Prokopczyk, Andrea On close to scalar families for fractional evolution equations: zero-one law. (English) Zbl 1484.47072 Semigroup Forum 99, No. 1, 140-152 (2019). MSC: 47D06 47D09 47D62 PDF BibTeX XML Cite \textit{L. R. Gambera} et al., Semigroup Forum 99, No. 1, 140--152 (2019; Zbl 1484.47072) Full Text: DOI OpenURL
Beghin, Luisa Long-memory Gaussian processes governed by generalized Fokker-Planck equations. (English) Zbl 1488.60081 ALEA, Lat. Am. J. Probab. Math. Stat. 16, No. 1, 439-461 (2019). MSC: 60G15 60G22 34A08 33C60 PDF BibTeX XML Cite \textit{L. Beghin}, ALEA, Lat. Am. J. Probab. Math. Stat. 16, No. 1, 439--461 (2019; Zbl 1488.60081) Full Text: arXiv Link OpenURL
Alsultan, R.; Ma, C. \(K\)-differenced vector random fields. (English) Zbl 1442.60056 Theory Probab. Appl. 63, No. 3, 393-407 (2019) and Teor. Veroyatn. Primen. 63, No. 3, 482-499 (2018). MSC: 60G60 60G15 62M30 PDF BibTeX XML Cite \textit{R. Alsultan} and \textit{C. Ma}, Theory Probab. Appl. 63, No. 3, 393--407 (2019; Zbl 1442.60056) Full Text: DOI OpenURL
Benjemaa, Mondher Taylor’s formula involving generalized fractional derivatives. (English) Zbl 1427.26002 Appl. Math. Comput. 335, 182-195 (2018). MSC: 26A24 26A33 34A08 41A58 44A15 45K05 PDF BibTeX XML Cite \textit{M. Benjemaa}, Appl. Math. Comput. 335, 182--195 (2018; Zbl 1427.26002) Full Text: DOI arXiv OpenURL
Karkulik, Michael Variational formulation of time-fractional parabolic equations. (English) Zbl 1416.35295 Comput. Math. Appl. 75, No. 11, 3929-3938 (2018). MSC: 35R11 35K99 PDF BibTeX XML Cite \textit{M. Karkulik}, Comput. Math. Appl. 75, No. 11, 3929--3938 (2018; Zbl 1416.35295) Full Text: DOI arXiv OpenURL
Pang, Denghao; Jiang, Wei; Niazi, Azmat U. K. Fractional derivatives of the generalized Mittag-Leffler functions. (English) Zbl 1448.33020 Adv. Difference Equ. 2018, Paper No. 415, 9 p. (2018). MSC: 33E12 26A33 PDF BibTeX XML Cite \textit{D. Pang} et al., Adv. Difference Equ. 2018, Paper No. 415, 9 p. (2018; Zbl 1448.33020) Full Text: DOI OpenURL
Pandey, S. C. The Lorenzo-Hartley’s function for fractional calculus and its applications pertaining to fractional order modelling of anomalous relaxation in dielectrics. (English) Zbl 1401.26015 Comput. Appl. Math. 37, No. 3, 2648-2666 (2018). MSC: 26A33 33E12 33E20 44A10 PDF BibTeX XML Cite \textit{S. C. Pandey}, Comput. Appl. Math. 37, No. 3, 2648--2666 (2018; Zbl 1401.26015) Full Text: DOI OpenURL
Yan, Litan; Yin, Xiuwei Large deviation principle for a space-time fractional stochastic heat equation with fractional noise. (English) Zbl 1398.60047 Fract. Calc. Appl. Anal. 21, No. 2, 462-485 (2018). MSC: 60F10 60H15 60G22 35R11 PDF BibTeX XML Cite \textit{L. Yan} and \textit{X. Yin}, Fract. Calc. Appl. Anal. 21, No. 2, 462--485 (2018; Zbl 1398.60047) Full Text: DOI OpenURL
Ha, Seung-Yeal; Jung, Jinwook Remarks on the slow relaxation for the fractional Kuramoto model for synchronization. (English) Zbl 1456.34061 J. Math. Phys. 59, No. 3, 032702, 18 p. (2018). MSC: 34D06 34C15 34A08 34D05 PDF BibTeX XML Cite \textit{S.-Y. Ha} and \textit{J. Jung}, J. Math. Phys. 59, No. 3, 032702, 18 p. (2018; Zbl 1456.34061) Full Text: DOI OpenURL
Iyiola, O. S.; Asante-Asamani, E. O.; Wade, B. A. A real distinct poles rational approximation of generalized Mittag-Leffler functions and their inverses: applications to fractional calculus. (English) Zbl 1375.26017 J. Comput. Appl. Math. 330, 307-317 (2018). MSC: 26A33 33E12 PDF BibTeX XML Cite \textit{O. S. Iyiola} et al., J. Comput. Appl. Math. 330, 307--317 (2018; Zbl 1375.26017) Full Text: DOI OpenURL
Chidouh, Amar; Guezane-Lakoud, Assia; Bebbouchi, Rachid; Bouaricha, Amor; Torres, Delfim F. M. Linear and nonlinear fractional Voigt models. (English) Zbl 1460.74011 Babiarz, Artur (ed.) et al., Theory and applications of non-integer order systems. Papers of the 8th conference on non-integer order calculus and its applications, Zakopane, Poland, September 20–21, 2016. Cham: Springer. Lect. Notes Electr. Eng. 407, 157-167 (2017). MSC: 74D05 74D10 74H20 26A33 PDF BibTeX XML Cite \textit{A. Chidouh} et al., Lect. Notes Electr. Eng. 407, 157--167 (2017; Zbl 1460.74011) Full Text: DOI arXiv OpenURL
Chen, Le Nonlinear stochastic time-fractional diffusion equations on \(\mathbb {R}\): moments, Hölder regularity and intermittency. (English) Zbl 1406.60093 Trans. Am. Math. Soc. 369, No. 12, 8497-8535 (2017). MSC: 60H15 60G60 35R60 PDF BibTeX XML Cite \textit{L. Chen}, Trans. Am. Math. Soc. 369, No. 12, 8497--8535 (2017; Zbl 1406.60093) Full Text: DOI arXiv OpenURL
Zhang, Zhidong An undetermined time-dependent coefficient in a fractional diffusion equation. (English) Zbl 1386.35463 Inverse Probl. Imaging 11, No. 5, 875-900 (2017). MSC: 35R11 35R30 65M32 PDF BibTeX XML Cite \textit{Z. Zhang}, Inverse Probl. Imaging 11, No. 5, 875--900 (2017; Zbl 1386.35463) Full Text: DOI arXiv OpenURL
Zhang, Wei; Bai, Zhanbing; Sun, Sujing Extremal solutions for some periodic fractional differential equations. (English) Zbl 1419.34096 Adv. Difference Equ. 2016, Paper No. 179, 8 p. (2016). MSC: 34B15 34A08 PDF BibTeX XML Cite \textit{W. Zhang} et al., Adv. Difference Equ. 2016, Paper No. 179, 8 p. (2016; Zbl 1419.34096) Full Text: DOI OpenURL
Fiel, Allan; León, Jorge A.; Márquez-Carreras, David Stability for a class of semilinear fractional stochastic integral equations. (English) Zbl 1419.34020 Adv. Difference Equ. 2016, Paper No. 166, 20 p. (2016). MSC: 34A08 60G22 26A33 93D99 34F05 60H20 PDF BibTeX XML Cite \textit{A. Fiel} et al., Adv. Difference Equ. 2016, Paper No. 166, 20 p. (2016; Zbl 1419.34020) Full Text: DOI arXiv OpenURL
Chidouh, Amar; Guezane-Lakoud, Assia; Bebbouchi, Rachid Positive solutions of the fractional relaxation equation using lower and upper solutions. (English) Zbl 1358.34009 Vietnam J. Math. 44, No. 4, 739-748 (2016). MSC: 34A08 34A12 33E12 47N20 PDF BibTeX XML Cite \textit{A. Chidouh} et al., Vietnam J. Math. 44, No. 4, 739--748 (2016; Zbl 1358.34009) Full Text: DOI OpenURL
Zhang, Zhidong An undetermined coefficient problem for a fractional diffusion equation. (English) Zbl 1332.35403 Inverse Probl. 32, No. 1, Article ID 015011, 21 p. (2016). MSC: 35R30 35R11 PDF BibTeX XML Cite \textit{Z. Zhang}, Inverse Probl. 32, No. 1, Article ID 015011, 21 p. (2016; Zbl 1332.35403) Full Text: DOI OpenURL
Garrappa, Roberto; Moret, Igor; Popolizio, Marina Solving the time-fractional Schrödinger equation by Krylov projection methods. (English) Zbl 1349.65547 J. Comput. Phys. 293, 115-134 (2015). MSC: 65M99 35Q41 35R11 33E12 PDF BibTeX XML Cite \textit{R. Garrappa} et al., J. Comput. Phys. 293, 115--134 (2015; Zbl 1349.65547) Full Text: DOI Link OpenURL
El-Ajou, Ahmad; Abu Arqub, Omar; Al-Smadi, Mohammed A general form of the generalized Taylor’s formula with some applications. (English) Zbl 1338.40007 Appl. Math. Comput. 256, 851-859 (2015). MSC: 40A25 PDF BibTeX XML Cite \textit{A. El-Ajou} et al., Appl. Math. Comput. 256, 851--859 (2015; Zbl 1338.40007) Full Text: DOI OpenURL
Zeng, Caibin; Chen, Yang Quan Global Padé approximations of the generalized Mittag-Leffler function and its inverse. (English) Zbl 1333.26007 Fract. Calc. Appl. Anal. 18, No. 6, 1492-1506 (2015). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 26A33 33E12 41A21 PDF BibTeX XML Cite \textit{C. Zeng} and \textit{Y. Q. Chen}, Fract. Calc. Appl. Anal. 18, No. 6, 1492--1506 (2015; Zbl 1333.26007) Full Text: DOI arXiv OpenURL
Choi, Sung Kyu; Kang, Bowon; Koo, Namjip Stability for Caputo fractional differential systems. (English) Zbl 1474.34382 Abstr. Appl. Anal. 2014, Article ID 631419, 6 p. (2014). MSC: 34D20 34A08 PDF BibTeX XML Cite \textit{S. K. Choi} et al., Abstr. Appl. Anal. 2014, Article ID 631419, 6 p. (2014; Zbl 1474.34382) Full Text: DOI OpenURL
Tomovski, Živorad; Pogány, Tibor K.; Srivastava, H. M. Laplace type integral expressions for a certain three-parameter family of generalized Mittag-Leffler functions with applications involving complete monotonicity. (English) Zbl 1393.93060 J. Franklin Inst. 351, No. 12, 5437-5454 (2014). MSC: 93C15 34A08 26A33 PDF BibTeX XML Cite \textit{Ž. Tomovski} et al., J. Franklin Inst. 351, No. 12, 5437--5454 (2014; Zbl 1393.93060) Full Text: DOI OpenURL
Cong, N. D.; Doan, T. S.; Siegmund, S.; Tuan, H. T. On stable manifolds for planar fractional differential equations. (English) Zbl 1354.34015 Appl. Math. Comput. 226, 157-168 (2014). MSC: 34A08 34D35 PDF BibTeX XML Cite \textit{N. D. Cong} et al., Appl. Math. Comput. 226, 157--168 (2014; Zbl 1354.34015) Full Text: DOI OpenURL
Garra, Roberto; Giusti, Andrea; Mainardi, Francesco; Pagnini, Gianni Fractional relaxation with time-varying coefficient. (English) Zbl 1305.26018 Fract. Calc. Appl. Anal. 17, No. 2, 424-439 (2014). MSC: 26A33 33E12 34A08 76A10 PDF BibTeX XML Cite \textit{R. Garra} et al., Fract. Calc. Appl. Anal. 17, No. 2, 424--439 (2014; Zbl 1305.26018) Full Text: DOI Link OpenURL
de Oliveira, Edmundo Capelas; Mainardi, Francesco; Vaz, Jayme jun. Fractional models of anomalous relaxation based on the Kilbas and Saigo function. (English) Zbl 1307.34007 Meccanica 49, No. 9, 2049-2060 (2014). MSC: 34A08 33E12 PDF BibTeX XML Cite \textit{E. C. de Oliveira} et al., Meccanica 49, No. 9, 2049--2060 (2014; Zbl 1307.34007) Full Text: DOI OpenURL
Irmak, Hüseyin; Frasin, Basem Aref A few complex equations constituted by an operator consisting of fractional calculus and their consequences. (English) Zbl 1300.30026 Chin. J. Math. (New York) 2014, Article ID 718389, 4 p. (2014). MSC: 30C45 26A33 PDF BibTeX XML Cite \textit{H. Irmak} and \textit{B. A. Frasin}, Chin. J. Math. (New York) 2014, Article ID 718389, 4 p. (2014; Zbl 1300.30026) Full Text: DOI OpenURL
El-Ajou, Ahmad; Arqub, Omar Abu; Zhour, Zeyad Al; Momani, Shaher New results on fractional power series: theories and applications. (English) Zbl 1337.26010 Entropy 15, No. 12, 5305-5323 (2013). MSC: 26A33 32A05 41A58 PDF BibTeX XML Cite \textit{A. El-Ajou} et al., Entropy 15, No. 12, 5305--5323 (2013; Zbl 1337.26010) Full Text: DOI OpenURL
Hanneken, John W.; Achar, B. N. Narahari; Vaught, David M. An alpha-beta phase diagram representation of the zeros and properties of the Mittag-Leffler function. (English) Zbl 1291.30034 Adv. Math. Phys. 2013, Article ID 421685, 13 p. (2013). MSC: 30C15 30D15 PDF BibTeX XML Cite \textit{J. W. Hanneken} et al., Adv. Math. Phys. 2013, Article ID 421685, 13 p. (2013; Zbl 1291.30034) Full Text: DOI OpenURL
Ma, Chunsheng Mittag-Leffler vector random fields with Mittag-Leffler direct and cross covariance functions. (English) Zbl 1329.60137 Ann. Inst. Stat. Math. 65, No. 5, 941-958 (2013). MSC: 60G60 60E10 33E12 PDF BibTeX XML Cite \textit{C. Ma}, Ann. Inst. Stat. Math. 65, No. 5, 941--958 (2013; Zbl 1329.60137) Full Text: DOI OpenURL
Nieto, Juan J. Comparison results for periodic boundary value problem of fractional differential equations. (English) Zbl 1412.34038 Fract. Differ. Calc. 1, No. 1, 99-104 (2011). MSC: 34A08 34B27 34C25 PDF BibTeX XML Cite \textit{J. J. Nieto}, Fract. Differ. Calc. 1, No. 1, 99--104 (2011; Zbl 1412.34038) Full Text: DOI OpenURL
Zhang, Fengrong; Li, Changpin; Chen, Yangquan Asymptotical stability of nonlinear fractional differential system with Caputo derivative. (English) Zbl 1239.34008 Int. J. Differ. Equ. 2011, Article ID 635165, 12 p. (2011). MSC: 34A08 34D20 PDF BibTeX XML Cite \textit{F. Zhang} et al., Int. J. Differ. Equ. 2011, Article ID 635165, 12 p. (2011; Zbl 1239.34008) Full Text: DOI OpenURL
Garrappa, Roberto; Popolizio, Marina Generalized exponential time differencing methods for fractional order problems. (English) Zbl 1228.65235 Comput. Math. Appl. 62, No. 3, 876-890 (2011). MSC: 65P10 34A08 26A33 45J05 65L20 PDF BibTeX XML Cite \textit{R. Garrappa} and \textit{M. Popolizio}, Comput. Math. Appl. 62, No. 3, 876--890 (2011; Zbl 1228.65235) Full Text: DOI OpenURL
Sakamoto, Kenichi; Yamamoto, Masahiro Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. (English) Zbl 1219.35367 J. Math. Anal. Appl. 382, No. 1, 426-447 (2011). MSC: 35R30 35R11 PDF BibTeX XML Cite \textit{K. Sakamoto} and \textit{M. Yamamoto}, J. Math. Anal. Appl. 382, No. 1, 426--447 (2011; Zbl 1219.35367) Full Text: DOI OpenURL
Simon, Thomas Mittag-Leffler functions and stable Lévy processes without negative jumps. (Fonctions de Mittag-Leffler et processus de Lévy stables sans sauts négatifs.) (French. English summary) Zbl 1194.33022 Expo. Math. 28, No. 3, 290-298 (2010). MSC: 33E12 60E05 60G52 PDF BibTeX XML Cite \textit{T. Simon}, Expo. Math. 28, No. 3, 290--298 (2010; Zbl 1194.33022) Full Text: DOI OpenURL
Dette, Holger; Leonenko, Nikolai; Pepelyshev, Andrey; Zhigljavsky, Anatoly Asymptotic optimal designs under long-range dependence error structure. (English) Zbl 1200.62084 Bernoulli 15, No. 4, 1036-1056 (2009); correction ibid. 18, No. 2, 746 (2012). MSC: 62K05 62J05 PDF BibTeX XML Cite \textit{H. Dette} et al., Bernoulli 15, No. 4, 1036--1056 (2009; Zbl 1200.62084) Full Text: DOI arXiv OpenURL
Hanyga, A.; Seredyńska, M. On a mathematical framework for the constitutive equations of anisotropic dielectric relaxation. (English) Zbl 1151.78002 J. Stat. Phys. 131, No. 2, 269-303 (2008). MSC: 78A25 78A60 82D20 PDF BibTeX XML Cite \textit{A. Hanyga} and \textit{M. Seredyńska}, J. Stat. Phys. 131, No. 2, 269--303 (2008; Zbl 1151.78002) Full Text: DOI OpenURL
Odibat, Zaid M.; Shawagfeh, Nabil T. Generalized Taylor’s formula. (English) Zbl 1122.26006 Appl. Math. Comput. 186, No. 1, 286-293 (2007). Reviewer: S. L. Kalla (Kuwait) MSC: 26A33 33C60 PDF BibTeX XML Cite \textit{Z. M. Odibat} and \textit{N. T. Shawagfeh}, Appl. Math. Comput. 186, No. 1, 286--293 (2007; Zbl 1122.26006) Full Text: DOI OpenURL
Odibat, Zaid M. A reliable modification of the rectangular decomposition method. (English) Zbl 1109.65118 Appl. Math. Comput. 183, No. 2, 1226-1234 (2006). MSC: 65R20 45K05 26A33 PDF BibTeX XML Cite \textit{Z. M. Odibat}, Appl. Math. Comput. 183, No. 2, 1226--1234 (2006; Zbl 1109.65118) Full Text: DOI OpenURL
Odibat, Zaid M. Rectangular decomposition method for fractional diffusion-wave equations. (English) Zbl 1100.65125 Appl. Math. Comput. 179, No. 1, 92-97 (2006). MSC: 65R20 45K05 26A33 PDF BibTeX XML Cite \textit{Z. M. Odibat}, Appl. Math. Comput. 179, No. 1, 92--97 (2006; Zbl 1100.65125) Full Text: DOI OpenURL
Barndorff-Nielsen, O. E.; Leonenko, N. N. Spectral properties of superpositions of Ornstein-Uhlenbeck type processes. (English) Zbl 1089.60014 Methodol. Comput. Appl. Probab. 7, No. 3, 335-352 (2005). Reviewer: Nijole Kalinauskaitė (Vilnius) MSC: 60E07 60G10 60G18 62M10 PDF BibTeX XML Cite \textit{O. E. Barndorff-Nielsen} and \textit{N. N. Leonenko}, Methodol. Comput. Appl. Probab. 7, No. 3, 335--352 (2005; Zbl 1089.60014) Full Text: DOI OpenURL