×

Semiconvergence in distribution of random closed sets with application to random optimization problems. (English) Zbl 1098.60014

Summary: The paper considers upper semicontinuous behavior in distribution of sequences of random closed sets. Semiconvergence in distribution will be described via convergence in distribution of random variables with values in a suitable topological space. Convergence statements for suitable functions of random sets are proved and the results are employed to derive stability statements for random optimization problems where the objective function and the constraint set are approximated simultaneously.

MSC:

60D05 Geometric probability and stochastic geometry
90C15 Stochastic programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Artstein, Z. (1984). ”Distributions of Random Sets and Random Selections.” Israel J. Mathematics 46, 313–324. · Zbl 0545.60018 · doi:10.1007/BF02762891
[2] Attouch, H. (1984). Variational Convergence for Functions and Operators. London: Pitman. · Zbl 0561.49012
[3] Bank, B. et al. (1982). Non-Linear Parametric Optimization. Berlin: Akademie-Verlag. · Zbl 0486.34006
[4] Beer, G. (1993). Topologies on Closed and Closed Convex Sets. Kluwer Academic Publishers. · Zbl 0792.54008
[5] Billingsley, P. (1968). Convergence of Probability Measures. New York: Wiley. · Zbl 0172.21201
[6] Dentcheva, D. (2000). ”Regular Castaing Representations with Applications to Stochastic Programming.” SIAM J. Optimization 10, 732–749. · Zbl 0999.54015 · doi:10.1137/S1052623498341454
[7] Dentcheva, D. (2001). ”Approximations, Extensions, and Univalued Representations of Multifunctions.” Nonlinear Analysis: Theory, Methods, & Applications 45, 85–108. · Zbl 0985.47039 · doi:10.1016/S0362-546X(99)00331-4
[8] Dudley, R.M. (1989). Real Analysis and Probability. Pacific Grove, Ca.: Wadsworth & Brooks/Cole. · Zbl 0686.60001
[9] Dudley, R.M. (1998). ”Consistency of M-estimators and One-sided Bracketing.” In E. Eberlein, M. Hahn, M. Talagrand (eds.), High Dimensional Probability. 151–189. Basel: Birkhäuser. · Zbl 0948.62012
[10] DupaČová, J. and R.J.-B. Wets. (1988). ”Asymptotic Behavior of Statistical Estimators and of Optimal Solutions of Stochastic Problems.” Annals of Statistics 16, 1517–1549. · Zbl 0667.62018 · doi:10.1214/aos/1176351052
[11] Embrechts, P., C. Klüppelberg, and T. Mikosch. (1997). Modelling Extremal Events. Springer-Verlag. · Zbl 0873.62116
[12] Francaviglia, S., A. Lechicki, and S. Levy. (1985). ”Quasi-uniformization of Hyperspaces and Convergence of Nets of Semicontinuous Multifunctions.” J. Math. Anal. Appl. 112, 347–370. · Zbl 0587.54003 · doi:10.1016/0022-247X(85)90246-X
[13] Hoffmann-Jørgensen, J. (1998). ”Convergence in Law of Random Elements and Random Sets.” In E. Eberlein, M. Hahn, M. Talagrand (eds.), High Dimensional Probability. 151-189. Basel: Birkhäuser. · Zbl 0916.60002
[14] Hu, S. and N.S. Papageorgiou. (1997). Handbook of Multivariate Analysis. Kluwer Academic Publishers. · Zbl 0887.47001
[15] King, A.J. (1989). ”Generalized Delta Theorems for Multivalued Mappings and Measurable Selections.” Math. Oper. Res. 14 (4), 720–736. · Zbl 0685.60008
[16] King, A.J. and R.T. Rockafellar. (1993). ”Asymptotic Theory for Solutions in Statistical Estimation and Stochastic Programming.” Math. Oper. Res. 18, 148–162. · Zbl 0798.90115 · doi:10.1287/moor.18.1.148
[17] Kuratowski, K. (1966). Topology, Vol. I. London, New York: Academic Press. · Zbl 0158.40901
[18] Lachout, P. (2000). ”Epi-Convergence Versus Topology: Splitting and Localization.” Research Report of the Academy of Sciences of the Czech Republic, UTIA No. 1987.
[19] Loève, M. (1997). Probability Theory. 4th edition, Springer-Verlag. · Zbl 0095.12201
[20] Lucchetti, R. and A. Torre. (1994). ”Classiscal Set Convergence and Topologies.” Set-Valued Analysis 2, 219–240. · Zbl 0832.54012 · doi:10.1007/BF01027103
[21] Matheron, G. (1975). Random Sets and Integral Geometry. Wiley. · Zbl 0321.60009
[22] Pflug, G.C. (1992). ”Asymptotic Dominance and Confidence for Solutions of Stochastic Programs.” Czechoslovak J. Oper. Res. 1 (1), 21–30. · Zbl 1015.90511
[23] Pflug, G.C. (1995). ”Asymptotic Stochastic Programs.” Math. Oper. Res. 20, 769–789. · Zbl 0847.90107 · doi:10.1287/moor.20.4.769
[24] Pollard, D. (1984). Convergence of Stochastic Processes. Springer-Verlag. · Zbl 0544.60045
[25] Robinson, S.M. (1987). ”Local Epi-Continuity and Local Optimization.” Math. Programming 37, 208–222. · Zbl 0623.90078 · doi:10.1007/BF02591695
[26] Rockafellar, R.T. and R.J.-B. Wets. (1998). Variational Analysis. Springer-Verlag. · Zbl 0888.49001
[27] Salinetti, G. and R.J.-B. Wets. (1986). ”On the Convergence in Distribution of Measurable Multifunctions (Random Sets), Normal Integrands, Stochastic Processes and Stochastic Infima.” Math. Oper. Res. 11, 385–419. · Zbl 0611.60004 · doi:10.1287/moor.11.3.385
[28] Shapiro, A. (1991). ”Asymptotic Analysis of Stochastic Programs.” Annals of Operations Research 30, 169–186. · Zbl 0745.90057 · doi:10.1007/BF02204815
[29] Shapiro, A. (2000). ”Statistical Inference of Stochastic Optimization Problems.” In S. Uryasev (ed.), Probabilistic Constrained Optimization: Methodology and Applications. 282-304. Kluwer Academic Pubishers. · Zbl 0979.90096
[30] van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge University Press. · Zbl 0910.62001
[31] van der Vaart, A.W. and J.A. Wellner. (1996). Weak Convergence and Empirical Processes. Springer-Verlag. · Zbl 0862.60002
[32] Vogel, S. (1991). Stochastische Stabilitätskonzepte. Habilitation, TH Ilmenau.
[33] Vogel, S. (1994). ”A Stochastic Approach to Stability in Stochastic Programming.” J. Comput. and Appl. Mathematics, Series Appl. Analysis and Stochastics. 56, 65–96. · Zbl 0824.90107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.