×

Invariant operators and Clifford analysis. (English) Zbl 1221.30117


MSC:

30G35 Functions of hypercomplex variables and generalized variables
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] W. W. Adams, C. A. Berenstein, P. Loustaunau, I. Sabadini, D. C. Struppa: Regular functions of several quaternionic variables, to appear in J. Geom. Anal. · Zbl 0966.35088
[2] T. N. Bailey, M. G. Eastwood: Complex paraconformal manifolds: their differential geometry and twistor theory, Forum Math.3 (1991), 61–103. · Zbl 0728.53005
[3] T. N. Bailey, M. G. Eastwood, C. R. Graham: Invariant theory for conformal and CR geometry, Annals of Math.139 (1994), 491–552. · Zbl 0814.53017
[4] T. N. Bailey, M. G. Eastwood, A. R. Gover: Thomas’s structure bundle for conformal, projective and related structures, Rocky Mountain J.24 (1994), 1191–1217. · Zbl 0828.53012
[5] R. J. Baston: Verma modules and differential conformal invariants, J. Diff. Geom.32 (1990), 851–898. · Zbl 0732.53011
[6] R. J. Baston: Almost Hermitian symmetric manifolds, I: Local twistor theory; II: Differential invariants, Duke. Math. J.,63 (1991), 81–111, 113–138. · Zbl 0724.53019
[7] R. J. Baston: Quaternionic complexes, J. Geom. Phys.8 (1992), 29–52. · Zbl 0764.53022
[8] R. J. Baston, M. G. Eastwood:The Penrose Transform. Its Interaction with Representation Theory, Oxford Science Publications, Clarendon Press, 1989.
[9] B. Booss-Bavnbeck, K. Wojciechowski:Elliptic boundary problems for Dirac operators, Birkhauser, Basel, 1993.
[10] F. Brackx, R. Delanghe, F. Sommen:Clifford analysis, Pitman, 1982.
[11] T. P. Branson: Conformally covariant equations on differential forms, Communications in PDE7 (1982), 392–431. · Zbl 0532.53021
[12] T. P. Branson: Differential operators canonically associated to a conformal structure, Math. Scand.57 (1985), 293–345. · Zbl 0596.53009
[13] T. P. Branson: Second-order conformal covariants I, II, Kobenhavns universitet matematisk institut, Preprint Series, No. 2, 3, (1989).
[14] T. P. Branson: Stein-Weiss operators and ellipticity, J. Funct. Anal.151 (1997), 334–383. · Zbl 0904.58054
[15] T. P. Branson: Spectra of self-gradients on spheres, Preprint, August 98.
[16] T. Branson; G. Olafsson; B. Ørsted: Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup, J. Funct. Anal.135 (1996), 163–205. · Zbl 0841.22011
[17] J. Bureš: Special invariant operators I., Comm. Math. Univ. Carol.192 (1996), 179–198. · Zbl 0851.58049
[18] J. Bureš: The higher spin Dirac operators, Proc. of Conf. ”Diff. Geometry and its Applications”, Brno, 1998.
[19] J. Bureš: The Rarita-Schwinger equation and spherical monogenic forms, to appear in Complex Variable
[20] J. Bureš, P. Van Lancker, F. Sommen, V. Souček: Symmetric analogues of Rarita-Schwinger equations, Preprint.
[21] J. Bureš, P. Van Lancker, F. Sommen, V. Souček: Function theory for symmetric Rarita-Schwinger equations, to be published
[22] D. M. J. Calderbank, Clifford analysis for Dirac operators on manifolds with boundary, preprint, MPI Bonn, 1996
[23] D. M. J. Calderbank, T. Diemmer: Differential bilinear invariants on curved BGG sequences, Preprint MS-99-010, Edinburgh, electronically available at http://xxx.lanl.gov/abs/math.DG/0001150
[24] A. Čap, A. R. Gover: Tractor Calculi for parabolic geometries, Preprint ESI 792 (1999), electronically available on www.esi.ac.at · Zbl 0996.53012
[25] A. Čap, H. Schichl: Parabolic Geometries and Canonical Cartan Connections, Preprint ESI 450 (1997), electronically available at www.esi.ac.at, to appear in Hokkaido Math. J.
[26] A. Čap, J. Slovák, V. Souček: Invariant operators on manifolds with almost Hermitian symmetric structures, I. Invariant differentiation, Acta Math. Univ. Commenianae,66 (1997), 33–69, electronically available at www.emis.de; II. Normal Cartan connections, Acta Math. Univ. Commenianae,66 (1997), 203–220, electronically available at www.emis.de; III. Standard operators, ESI Preprint 613 (1998), to appear in Diff. Geom. Appl.12 (2000), electronically available at www.esi.ac.at. · Zbl 0969.53003
[27] A. Čap, J. Slovák, V. Souček: Bernstein-Gelfand-Gelfand sequences, ESI Preprint 722 (1999), electronically available at www.esi.ac.at.
[28] S. S. Chern, J. Moser: Real hypersurfaces in complex manifolds, Acta Math.133 (1974), 219–271. · Zbl 0302.32015
[29] D. Constales: The relative position ofL 2-domains in complex and Clifford analysis, Ph. D. thesis, State Univ. Ghent, 1989–1990.
[30] R. Delanghe, F. Sommen, V. Souček:Clifford algebras and spinor valued functions: Function theory for Dirac operator, Kluwer, 1992
[31] M. Eastwood: Variations on the de Rham complex, Notices Amer. Math. Soc.46, No 11 (1999), 1368–1376. · Zbl 0982.53047
[32] C. Fefferman: Parabolic invariant theory in complex analysis, Adv. in Math.31 (1979), 131–262. · Zbl 0444.32013
[33] C. Fefferman, R. C. Graham: Conformal invariants, in:Élie Cartan et les Mathématiques d’Aujourdui, Astérisque, 1985, 95–116.
[34] H. D. Fegan: Conformally invariant first order differential operators, Quart. J. Math.27 (1976), 371–378. · Zbl 0334.58016
[35] L. Garding: Relativistic wave equations for zero rest-mass, Proc. Camb. Phil. Soc.,41 (1945) 49.
[36] J. Gilbert, M. Murray:Clifford algebras and Dirac operators in harmonic analysis, Cambridge University Press, 1991. · Zbl 0733.43001
[37] A. R. Gover: Conformally invariant operators of standard type, Quart. J. Math.40 (1989), 197–208 · Zbl 0683.53063
[38] A. R. Gover: Invariants and calculus for projective geometries, Math. Annalen,306 (1996), 513–538. · Zbl 0904.53014
[39] A. R. Gover: Invariants and calculus for conformal geometry, Preprint (1998), to appear.
[40] A. R. Gover: Aspects of parabolic invariant theory, in: Proc. Winter School Geometry and Physics, Srni 1998, Supp. Rend. Circ. Mat. Palermo,59 (1999), 25–47. · Zbl 0967.53033
[41] A. R. Gover, C.R. Graham: CR calculus and invariant powers of the sub-Laplacian, to appear. · Zbl 1076.53048
[42] C. R. Graham: Conformally invariant powers of the Laplacian, II: Nonexistence, J. London Math. Soc.,46 (1992), 566–576 · Zbl 0788.53012
[43] C. R. Graham: Invariant theory of parabolic geometries, in:Conf. Proc. Complex Geometry, Osaka 1990, Marcel Dekker Lecture Notes, Pure and Applied Math. 143, 1993, pp. 53–66. · Zbl 0794.53028
[44] K. Gürlebeck, W. Sprössig:Quaternionic analysis and elliptic boundary value problems, Birkhäuser Verlag, Basel, 1990. · Zbl 0850.35001
[45] K. Habermann: The Dirac operator on Symplectic Spinors, Ann. Glob. Anal. Geom.,13 (1995) 155–168. · Zbl 0842.58042
[46] K. Habermann: Basic properties of symplectic Dirac operators, Comm. Math. Phys.184 (1997) 629–652. · Zbl 1008.58024
[47] N. J. Hitchin: Linear field equations on self-dual spaces, Proc. R. Soc. Lond.A 370 (1980) 173–191. · Zbl 0436.53058
[48] H. P. Jakobsen: Conformal invariants, Publ. RIMS, Kyoto Univ22 (1986), 345–364. · Zbl 0605.22011
[49] B. Kostant: Symplectic spinors, Symposia Mathematica, Vol.XIV, 1974. · Zbl 0321.58015
[50] H. B. Lawson, M.-L. Michelson:Spin Geometry, Princeton University Press, Princeton, NJ, 1989.
[51] T. Morimoto: Geometric structures on filtered manifolds, Hokkaido Math. J.22, (1993), 263–347. · Zbl 0801.53019
[52] B. Ørsted: Conformally invariant differential equations and projective geometry, J. Funct. Anal.44 (1981), 1–23. · Zbl 0507.58048
[53] V. P. Palamodov: Holomorphic Synthesis of Monogenic Functions of Several Quaternionic Variables, Preprint Angewandte Mathematik und Informatik, Univ. Münster, 26/98-I, 1998, pp. 1–31.
[54] D. Pertici: Teoria delle funzioni di piu variabili quaternionici, Ph. D. thesis. Univ. d. Stud. d. Firenze, 1987–88.
[55] J. Ryan (Ed.):Clifford algberas in analysis and related topics, Studies in Advanced Mathematics, CRC Press, New York, 1996
[56] R. W. Sharpe:Differential Geometry, Graduate Texts in Mathematics 166, Springer-Verlag 1997.
[57] G. Schmalz, J. Slovák: The Geometry of Hyperbolic and Elliptic CR-manifolds of codimension two, Preprint MPI MIS 3/99, electronically available at www.mis.mpg.de , to appear in Asian J. Math. · Zbl 1062.32026
[58] J. Slovák: Parabolic geometries, Research Lecture Notes, Part of DrSc. Dissertation, Preprint IGA 11/97, electronically available at www.maths.adelaide.edu.au, 70pp.
[59] J. Slovák, V. Souček: Invariant operators of the first order on manifolds with a given parabolic structure, submitted to the Proc. of the Colloque ’Analyse harmonique et analyse sur let Variétés’, CIRM, Luminy, May 1999.
[60] P. Somberg: Properties of BGG resolutions on the spheres, PhD. thesis, Praha, 1999.
[61] F. Sommen: Clifford analysis in two and several vector variables, to appear in Appl. Anal. · Zbl 1054.30050
[62] V. Souček: Clifford analysis for higher spins, in Proc. of the Conf. ”Clifford algebras and their applications in mathematical physics”, Deinze Fund. Theories Phys., 55, Kluwer Acad. Publ., Dordrecht, 1993.
[63] N. Tanaka: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japanese J. Math.2 (1976), 131–190. · Zbl 0346.32010
[64] N. Tanaka: On the equivalence problem associated with simple graded Lie algebras, Hokkaido Math. J.8 (1979), 23–84. · Zbl 0409.17013
[65] T. Y. Thomas: On conformal geometry, Proc. N.A.S.12 (1926), 352–359. · JFM 52.0736.01
[66] P. Van Lancker, F. Sommen, D. Constales: Models for irreducible representations ofSpin(m), to appear in the Proc. of Conf. on Dirac Operators, Cetraro, 1998.
[67] V. Wünsch: On conformally invariant differential operators, Math. Nachr.129 (1986), 269–281. · Zbl 0619.53008
[68] K. Yamaguchi: Differential systems associated with simple graded Lie algebras, Advanced Studies in Pure Mathematics22 (1993), 413–494. · Zbl 0812.17018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.