On special types of semiholonomic \(3\)-jets. (English) Zbl 1274.58001

Summary: First we summarize some properties of the nonholonomic \(r\)-jets from the functorial point of view. In particular, we describe the basic properties of our original concept of nonholonomic \(r\)-jet category. Then we deduce certain properties of the Weil algebras associated with nonholonomic \(r\)-jets. Next we describe an algorithm for finding the nonholonomic \(r\)-jet categories. Finally we classify all special types of semiholonomic \(3\)-jets.


58A20 Jets in global analysis
58A32 Natural bundles
Full Text: DOI


[1] C. Ehresmann: Oeuvres Complètes et Commentées. Topologie Algébrique et Géométrie Différentielle. Parties I-1 et I-2. Éd. par Andrée Charles Ehresmann, Suppléments 1 et 2 au Vol. XXIV. Cahiers de Topologie et Géométrie Différentielle, 1983. (In French.) · Zbl 0561.01027
[2] I. Kolář: The contact of spaces with connection. J. Differ. Geom. 7 (1972), 563–570. · Zbl 0273.53025
[3] I. Kolář: Bundle functors of the jet type. Differential Geometry and Applications. Proceedings of the 7th international conference. Masaryk University, Brno, 1999, pp.231–237.
[4] I. Kolář: A general point of view to nonholonomic jet bundles. Cah. Topol. Géom. Différ. Catég. 44 (2003), 149–160.
[5] I. Kolář: Weil Bundles as Generalized Jet Spaces. Handbook of global analysis, Amsterdam: Elsevier, 2008, pp. 625–665.
[6] I. Kolář: On special types of nonholonomic contact elements. Differ. Geom. Appl. 29 (2011), 135–140. · Zbl 1229.58005
[7] I. Kolář, W.M. Mikulski: On the fiber product preserving bundle functors. Differ. Geom. Appl. 11 (1999), 105–115. · Zbl 0935.58001
[8] I. Kolář, P.W. Michor, J. Slovák: Natural Operations in Differential Geometry. Springer, Berlin, 1993.
[9] P. Libermann: Introduction to the theory of semi-holonomic jets. Arch. Math., Brno 33 (1997), 173–189. · Zbl 0915.58004
[10] G. Vosmanská: Natural transformations of semi-holonomic 3-jets. Arch. Math., Brno 31 (1995), 313–318. · Zbl 0852.58003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.