×

On Hölder and Minkowski type inequalities. (English) Zbl 1474.26101

Summary: We obtain inequalities of Hölder and Minkowski type with weights generalizing both the case of weights with alternating signs and the classical case of nonnegative weights.

MSC:

26D15 Inequalities for sums, series and integrals
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Chunaev, P., Hölder and Minkowski type inequalities with alternating signs · Zbl 1314.26028
[2] Szegö, G., Über eine verallgemeinerung des dirichletschen integrals, Mathematische Zeitschrift, 52, 1, 676-685, (1950) · Zbl 0036.20001
[3] Bellman, R., On an inequality due to Weinberger, American Mathematical Monthly, 60, 402, (1953)
[4] Bellman, R., On inequalities with alternating signs, Proceedings of the American Mathematical Society, 10, 807-809, (1959) · Zbl 0098.26406
[5] Brunk, H. D., On an inequality for convex functions, Proceedings of the American Mathematical Society, 7, 817-824, (1956) · Zbl 0071.27902
[6] Weinberger, H. F., An inequality with alternating signs, Proceedings of the National Academy of Sciences of the United States of America, 38, 611-613, (1952) · Zbl 0047.05304
[7] Steffensen, J. F., Bounds of certain trigonometrical integrals, C.R. Dixième Congrès des Mathématiciens Scandinaves (1946), Jul. Gjellerups Forlag
[8] Olkin, I., On inequalities of Szego and Bellman, Proceedings of the National Academy of Sciences of the United States of America, 45, 230-231, (1959)
[9] Wright, E. M., An inequality for convex functions, The American Mathematical Monthly, 61, 9, 620-622, (1954) · Zbl 0057.04801
[10] Mond, B.; Pecaric, J. E., Szego and related inequalities for operator-convex functions, Soochow Journal of Mathematics, 22, 1, 33-37, (1996) · Zbl 0852.47008
[11] Pecaric, J. E., On an inequality of G. Szego, Journal of Mathematical Analysis and Applications, 158, 2, 349-351, (1991) · Zbl 0734.26010
[12] Pečarić, J. E.; Proschan, F.; Tong, Y. L., Convex Functions, Partial Orderings, and Statistical Applications. Convex Functions, Partial Orderings, and Statistical Applications, Mathematics in Science and Engineering, 187, (1992), London, UK: Academic Press, London, UK · Zbl 0749.26004
[13] Zhuang, Y. D., On inverses of the Hölder inequality, Journal of Mathematical Analysis and Applications, 161, 2, 566-575, (1991) · Zbl 0752.26009
[14] Hardy, G. H.; Littlewood, J. E.; Polya, G., Inequalities, (1952), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0047.05302
[15] Barlow, R. E.; Marshall, A. W.; Proschan, F., Some inequalities for starshaped and convex functions, Pacific Journal of Mathematics, 29, 1, 19-42, (1969) · Zbl 0176.01203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.