×

A Ky Fan minimax inequality for quasiequilibria on finite-dimensional spaces. (English) Zbl 07032740

Summary: Several results concerning existence of solutions of a quasiequilibrium problem defined on a finite-dimensional space are established. The proof of the first result is based on a Michael selection theorem for lower semicontinuous set-valued maps which holds in finite-dimensional spaces. Furthermore, this result allows one to locate the position of a solution. Sufficient conditions, which are easier to verify, may be obtained by imposing restrictions either on the domain or on the bifunction. These facts make it possible to yield various existence results which reduce to the well-known Ky Fan minimax inequality when the constraint map is constant and the quasiequilibrium problem coincides with an equilibrium problem. Lastly, a comparison with other results from the literature is discussed.

MSC:

47J20 Variational and other types of inequalities involving nonlinear operators (general)
49J35 Existence of solutions for minimax problems
49J40 Variational inequalities
90C30 Nonlinear programming
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Fan, K.; Shisha, O. (ed.), A minimax inequality and applications, 103-113, (1972), New York
[2] Bigi, G.; Castellani, M.; Pappalardo, M.; Passacantando, M., Existence and solution methods for equilibria, Eur. J. Oper. Res., 227, 1-11, (2013) · Zbl 1292.90315
[3] Bensoussan, A.; Goursat, M.; Lions, JL, Contrôle impulsionnel et inéquations quasi-variationnelles stationnaires, C.R. Acad. Sci. Paris Sér. A, 276, 1279-1284, (1973) · Zbl 0264.49004
[4] Mosco, U.: Implicit variational problems and quasi variational inequalities. In: Lecture Notes in Mathematics, vol. 543, pp. 83-156. Springer, Berlin (1976) · Zbl 0346.49003
[5] Alleche, B.; Rădulescu, VD, Solutions and approximate solutions of quasi-equilibrium problems in Banach spaces, J. Optim. Theory Appl., 170, 629-649, (2016) · Zbl 1351.47040
[6] Aubin, J.P.: Optima and Equilibria. Springer, Berlin (1993) · Zbl 0781.90012
[7] Aussel, D.; Cotrina, J.; Iusem, A., Existence results for quasi-equilibrium problems, J. Convex Anal., 24, 55-66, (2017) · Zbl 1364.49008
[8] Castellani, M.; Giuli, M., An existence result for quasiequilibrium problems in separable Banach spaces, J. Math. Anal. Appl., 425, 85-95, (2015) · Zbl 1322.49031
[9] Castellani, M.; Giuli, M., Approximate solutions of quasiequilibrium problems in Banach spaces, J. Glob. Optim., 64, 615-620, (2016) · Zbl 1344.90057
[10] Cubiotti, P., Existence of solutions for lower semicontinuous quasiequilibrium problems, Comput. Math. Appl., 30, 11-22, (1995) · Zbl 0844.90094
[11] Cubiotti, P., Existence of Nash equilibria for generalized games without upper semicontinuity, Int. J. Game Theory, 26, 267-273, (1997) · Zbl 0881.90134
[12] Michael, E., Continuous selections. I, Ann. Math., 63, 361-382, (1956) · Zbl 0071.15902
[13] Border, K.C.: Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University Press, Cambridge (1985) · Zbl 0558.47038
[14] Lin, YJ; Tian, GQ, Minimax inequalities equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz theorems, Appl. Math. Optim., 28, 173-179, (1993) · Zbl 0788.49015
[15] Papageorgiou, NS, On the existence of \(\psi \)-minimal viable solutions for a class of differential inclusions, Arch. Math., 27, 175-182, (1991) · Zbl 0759.34014
[16] Zhou, J., On the existence of equilibrium for abstract economies, J. Math. Anal. Appl., 193, 839-858, (1995) · Zbl 0837.90021
[17] Yuan, G.X.-Z.: The study of minimax inequalities and applications to economies and variational inequalities. Memoirs of the American Mathematical Society, Providence, Rhode Island, vol. 132 (1998)
[18] Bagh, A., Lower hemi-continuity, open sections, and convexity: counter examples in infinite dimensional spaces, Theor. Econ. Lett., 2, 121-124, (2012)
[19] Bergstrom, TC; Parks, RP; Rader, T., Preferences which have open graphs, J. Math. Econ., 3, 265-268, (1976) · Zbl 0387.90009
[20] Borisovich, Y.; Gel’man, BD; Myshkis, AD; Obukhovskii, VV, Multivalued mappings, J. Sov. Math., 24, 719-791, (1984) · Zbl 0529.54013
[21] Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970) · Zbl 0193.18401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.