×

Unstructured grid optimization for improved monotonicity of discrete solutions of elliptic equations with highly anisotropic coefficients. (English) Zbl 1173.76413

Summary: Multipoint flux approximation (MPFA) techniques are commonly applied for discretizing the porous media flow equations within the context of finite volume numerical procedures. Although these methods can be applied to heterogeneous, anisotropic systems on generally unstructured grids, the inverse of the resulting linear operator can suffer from a loss of monotonicity at high permeability anisotropy ratios, resulting in spurious oscillations of the pressure solution. The purpose of this paper is to develop a method for optimizing unstructured grids in two and three dimensions such that the monotonicity behavior of the MPFA technique is significantly improved. The method employs anisotropic triangulation and can be readily combined with permeability upscaling procedures. Results are presented for a variety of examples and the technique is shown to perform well on problems involving complex grid point distributions and heterogeneous permeability fields with strong anisotropy ratios (of \(O(100)\)). Oscillation free pressure solutions are achieved in all cases considered, even for examples in which the original grid shows large oscillations.

MSC:

76S05 Flows in porous media; filtration; seepage
76M12 Finite volume methods applied to problems in fluid mechanics
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aavatsmark, I., An introduction to multipoint flux approximations for quadrilateral grids, Comput. Geosci., 6, 405-432 (2002) · Zbl 1094.76550
[2] Aavatsmark, I.; Barkve, T.; Bøe, Ø.; Mannseth, T., Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media, J. Comput. Phys., 127, 2-14 (1996) · Zbl 0859.76048
[3] Aavatsmark, I.; Barkve, T.; Bøe, Ø.; Mannseth, T., Discretization on unstructured grids for inhomogeneous anisotropic media. Part I: derivation of the methods, SIAM J. Sci. Comput., 18, 1700-1716 (1998) · Zbl 0951.65080
[4] Aavatsmark, I.; Barkve, T.; Bøe, Ø.; Mannseth, T., Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: discussion and numerical results, SIAM J. Sci. Comput., 18, 1717-1736 (1998) · Zbl 0951.65082
[5] Arbogast, T.; Dawson, C. N.; Keenan, P. T.; Wheeler, M. F.; Yotov, I., Enhanced cell-centered finite differences for elliptic equations on general geometry, SIAM J. Sci. Comput., 19, 404-428 (1998) · Zbl 0947.65114
[6] Bear, J., Dynamics of Fluids in Porous Media (1972), Elsevier: Elsevier New York · Zbl 1191.76001
[7] Bern, M.; Chew, L.; Eppstein, D.; Ruppert, J., Dihedral bounds for mesh generation in high dimensions, (Proceedings of the 6th Symposium on Discrete Algorithms (1995), ACM and SIAM), 189-196 · Zbl 0849.68116
[8] Borouchaki, H.; George, P. L.; Hecht, P.; Laug, P.; Saletl, E., Delaunay mesh generation governed by metric specification: Part I. Algorithms, Finite Elem. Anal. Des., 25, 6183 (1997)
[9] Carey, G. F., Hexing the tet, Commun. Numer. Meth. Eng., 18, 223-227 (2002) · Zbl 0996.65133
[10] Castro-Diaz, M. J.; Hecht, F.; Mohammadi, B.; Pironneau, O., Anisotropic unstructured mesh adaption for flow simulations, Int. J. Numer. Meth. Fluids, 25, 475-491 (1997) · Zbl 0902.76057
[11] Crumpton, P. I.; Shaw, G. J.; Ware, A. F., Discretization and multigrid solution of elliptic equations with mixed derivative terms and strongly discontinuous coefficients, J. Comput. Phys., 116, 343-358 (1995) · Zbl 0818.65113
[12] Durlofsky, L. J., A triangle based mixed-finite element-finite volume technique for modeling two phase flow through porous media, J. Comput. Phys., 105, 252-266 (1993) · Zbl 0768.76046
[13] Edelsbrunner, H., Geometry and Topology for Mesh Generation (2001), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0981.65028
[14] Edwards, M. G., Unstructured, control-volume distributed, full-tensor finite-volume schemes with flow based grids, Comput. Geosci., 6, 433-452 (2002) · Zbl 1036.76034
[15] Edwards, M. G.; Rogers, C. F., Finite volume discretization with imposed flux continuity for the general tensor pressure equation, Comput. Geosci., 2, 259-290 (1998) · Zbl 0945.76049
[16] Eigestad, G. T.; Aavatsmark, I.; Espedal, M., Symmetry and \(M\)-matrix issues for the \(O\)-method on an unstructured grid, Comput. Geosci., 6, 381-404 (2002) · Zbl 1094.76551
[17] Forsyth, P. A., A control volume finite element approach to NAPL groundwater contamination, SIAM J. Sci. Stat. Comput., 12, 514-539 (1991) · Zbl 0725.76087
[18] Freitag, L. A.; Ollivier-Gooch, C., Tetrahedral mesh improvement using swapping and smoothing, Int. J. Numer. Methods Eng., 40, 3979-4002 (1997) · Zbl 0897.65075
[19] Fung, L. S.-K.; Hiebert, A. D.; Nghiem, L. X., Reservoir simulation with a control-volume finite-element method, SPE Res. Eng., 7, 349-357 (1992)
[20] George, P. L.; Borouchaki, H., Delaunay Triangulation and Meshing (1998), HERMES: HERMES Paris
[21] Heinemann, Z. E.; Brand, C. W.; Munka, M.; Chen, Y. M., Modeling reservoir geometry with irregular grids, SPE Res. Eng., 6, 225-232 (1991)
[22] Huang, W., Metric tensors for anisotropic mesh generation, J. Comput. Phys., 204, 633-665 (2005) · Zbl 1067.65140
[23] Hyman, J.; Morel, J.; Shashkov, M.; Steinberg, S., Mimetic finite difference methods for diffusion equations, Comput. Geosci., 6, 333-352 (2002) · Zbl 1023.76033
[24] Hyman, J.; Shashkov, M.; Steinberg, S., The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials, J. Comput. Phys., 132, 1029-1057 (1997)
[25] de l’Isle, E. B.; George, P. L., Optimization of tetrahedral meshes, (Babushka, I.; Henshaw, W. D.; Oliger, J. E.; Flaherty, J. E.; Hopcroft, J. E.; Tezduyar, T., Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations (1995), Springer: Springer Berlin) · Zbl 0831.65127
[26] Joe, B., Construction of three-dimensional improved-quality triangulations using local transformations, SIAM J. Sci. Comput., 16, 1292-1307 (1995) · Zbl 0851.65081
[27] Klausen, R. A.; Russell, T. F., Relationships among some locally conservative discretization methods which handle discontinuous coefficients, Comput. Geosci., 8, 341-377 (2005) · Zbl 1124.76030
[28] Lawson, C. L., Software for \(C^1\) surface interpolation, (Rice, John D., Mathematical Software III (1977), Academic Press: Academic Press New York) · Zbl 0407.68033
[29] Lee, S. H.; Tchelepi, H. A.; Jenny, P.; DeChant, L. J., Implementation of a flux-continuous finite-difference method for stratigraphic hexahedron grids, SPE J., 7, 267-277 (2002)
[30] Letniowski, W., Three-dimensional Delaunay triangulations for finite element approximations to a second-order diffusion operator, SIAM J. Sci. Stat. Comput., 13, 514-539 (1992) · Zbl 0762.65066
[31] Mavriplis, D. J., Adaptive mesh generation for viscous flows using Delaunay triangulation, J. Comput. Phys., 90, 271-291 (1990) · Zbl 0701.76037
[32] Norbotten, J. M.; Aavatsmark, I., Monotonicity conditions for control volume methods in uniform parallelogram grids in homogeneous media, Comput. Geosci., 9, 61-72 (2005)
[33] Norbotten, J. M.; Eigestad, G. T., Discretization on quadrilateral grids with improved monotonicity properties, J. Comput. Phys., 203, 744-760 (2005) · Zbl 1143.76540
[34] Peraire, J.; Peiró, J.; Morgan, K., Adaptive remeshing for three-dimensional compressible flow computations, J. Comput. Phys., 103, 269-285 (1992) · Zbl 0764.76037
[35] Petrovskaya, N. B., Modification of a finite volume scheme for Laplace’s equation, SIAM J. Sci. Comput., 23, 891-909 (2001) · Zbl 1004.65111
[36] M. Prevost, Accurate coarse reservoir modeling using unstructured grids, flow-based upscaling and streamline simulation, Ph.D. Thesis, Stanford University, 2003.; M. Prevost, Accurate coarse reservoir modeling using unstructured grids, flow-based upscaling and streamline simulation, Ph.D. Thesis, Stanford University, 2003.
[37] Putti, M.; Cordes, C., Finite element approximation of the diffusion operator on tetrahedra, SIAM J. Sci. Comput., 19, 1154-1168 (1998) · Zbl 0915.65111
[38] Shashkov, M.; Steinberg, S., Solving diffusion equations with rough coefficients in rough grids, J. Comput. Phys., 129, 383-405 (1996) · Zbl 0874.65062
[39] J. Shewchuk, Two discrete algorithms for the topological improvement of tetrahedral meshes, manuscript, 2002. Available from: <http://www-2.cs.cmu.edu/jrs/jrspapers.html>; J. Shewchuk, Two discrete algorithms for the topological improvement of tetrahedral meshes, manuscript, 2002. Available from: <http://www-2.cs.cmu.edu/jrs/jrspapers.html>
[40] Varga, R., Matrix Iterative Analysis (1963), Prentice-Hall: Prentice-Hall New York
[41] S. Verma, K. Aziz, A control volume scheme for flexible grids in reservoir simulation, SPE Paper 37999, in: Proceedings of 14th SPE Symposium on Reservoir Simulation held in Dallas, TX, 1997, pp. 215-227.; S. Verma, K. Aziz, A control volume scheme for flexible grids in reservoir simulation, SPE Paper 37999, in: Proceedings of 14th SPE Symposium on Reservoir Simulation held in Dallas, TX, 1997, pp. 215-227.
[42] Wen, X. H.; Durlofsky, L. J.; Edwards, M. G., Upscaling of channel systems in two dimensions using flow-based grids, Transport Porous Media, 51, 343-366 (2003)
[43] Wheeler, J. A.; Wheeler, M. F.; Yotov, I., Enhanced velocity mixed finite element methods for flow in multiblock domains, Comput. Geosci., 6, 381-404 (2002)
[44] Xu, J.; Zikatanov, L., A monotone finite element scheme for convection-diffusion equations, Math. Comp., 68, 1429-1446 (1999) · Zbl 0931.65111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.