zbMATH — the first resource for mathematics

An entropic solver for ideal Lagrangian magnetohydrodynamics. (English) Zbl 0952.76053
Summary: We adapt to the ideal one-dimensional Lagrangian MHD equations a class of numerical schemes of order one in time and space. They use some properties of conservation laws with zero entropy flux which describe fluid models invariant by Galilean transformation and reversible for regular solutions. These numerical schemes satisfy the entropy inequality under CFL conditions. In the last section, we describe a particular scheme for the MHD equations and show with some numerical applications its robustness and accuracy.

76M20 Finite difference methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI
[1] Angrand, F., Méthode numérique pour la MHD idéale eulérienne de type FLIP, (1996)
[2] Barmin; Kulikovskiy; Pogorelov, Shock-capturing approach and nonevolutionnary solutions in magnetohydrodynamics, J. comput. phys., 126, 77, (1996) · Zbl 0863.76039
[3] Bezard, F., Approximation numérique de problèmes d’interfaces en mécanique des fluides, (1998)
[4] Boillat, G., Symétrisation des systèmes d’équations aux dérivées partielles avec densité d’énergie convexe et contraintes, C. R. acad. sci. Paris, 295, 551, (1982) · Zbl 0511.35057
[5] Brio, M.; Wu, C.-C., An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. comput. phys., 75, 400, (1988) · Zbl 0637.76125
[6] Cargo, P., Nouveaux modèles numériques pour l’hydrodynamique atmosphérique et la magnéto- hydrodynamique idéale, (1995)
[7] Cargo, P.; Gallice, G., Roe matrices for ideal MHD and systematic construction of roe matrices for systems of conservation laws, J. comput. phys., 136, 446, (1997) · Zbl 0919.76053
[8] Cargo, P.; Gallice, G.; Raviart, P.-A., Construction d’une linéarisée de roe pour LES équations de la MHD idéale, C. R. acad. sci. Paris Sér. I, 323, 951, (1996) · Zbl 0873.76094
[9] Dai, W.; Woodward, P.-R., An approximate Riemann solver for ideal magnetohydrodynamics, J. comput. phys., 111, 354, (1994) · Zbl 0797.76052
[10] Dai, W.; Woodward, P.-R., A high-order Godunov-type scheme for shock interactions in ideal magnetohydrodynamics, SIAM J. sci. comput., 18, 957, (1997) · Zbl 0933.76056
[11] B. Després, Structure des systémes de lois de conservation en variables Lagrangiennes, C. R. Acad. Sci. Paris, in press.
[12] Després, B., Inégalité entropique pour un solveur conservatif du système de la dynamique des gaz en coordonnées de Lagrange, C. R. acad. sci. Paris ser. I, 324, 1301, (1997) · Zbl 0882.76053
[13] B. Després, Structure of lagrangian systems of conservation laws, approximate Riemann solvers and the entropy condition, Numer. Math, in press.
[14] Godlewski, E.; Raviart, P.-A., Hyperbolic systems of conservation laws, (1991) · Zbl 1063.65080
[15] Godlewski, E.; Raviart, P.-A., Numerical approximation of hyperbolic systems of conservation laws, (1996) · Zbl 1063.65080
[16] Khanfir, R., Approximation volumes finis de type cinétique du système hyperbolique de la MHD idéale compressible à pression isotrope, (1995)
[17] Landau, L.; Lifchitz, F., Électrodynamique des milieux continus, 8, (1969)
[18] Lin, Y.; Lee, L.-C.; Kennel, C.-F., Geophys. res. lett., 19, 229, (1992)
[19] Wu, C.-C.; Kennel, C.-F., Phys. fluids B, 5, 2877, (1993)
[20] Munz, C.-D., On Godunov-type schemes for Lagrangian gas dynamics, SIAM J. numer. anal., 31, 17, (1994) · Zbl 0796.76057
[21] P.-A. Raviart, Méthode Pic pour la MHD, to appear.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.