Kirk, Benjamin S.; Stogner, Roy H.; Bauman, Paul T.; Oliver, Todd A. Modeling hypersonic entry with the fully-implicit Navier-Stokes (FIN-S) stabilized finite element flow solver. (English) Zbl 1391.76340 Comput. Fluids 92, 281-292 (2014). Summary: In this paper, we present a novel scheme for modeling the hypersonic atmospheric entry of large vehicles with an ablative thermal protection system. The Favre-averaged thermochemical nonequilibrium Navier-Stokes equations with Spalart-Allmaras turbulence closure, thermodynamic, chemical kinetic, and quasi-steady ablation model are presented. The numerical method is based on a streamline upwind Petrov-Galerkin (SUPG) stabilized finite element formulation. The formulation and implementation of the finite element approximation are discussed in detail. The performance of the scheme is investigated through a series of increasingly complex applications, culminating in the simulation of a three-dimensional ablating heatshield in transitioning flow. Cited in 5 Documents MSC: 76M10 Finite element methods applied to problems in fluid mechanics 76K05 Hypersonic flows 76D05 Navier-Stokes equations for incompressible viscous fluids Keywords:stabilized finite elements; compressible flow; hypersonic flow; reentry; surface ablation Software:libMesh; PETSc; MASA; Spalart-Allmaras PDF BibTeX XML Cite \textit{B. S. Kirk} et al., Comput. Fluids 92, 281--292 (2014; Zbl 1391.76340) Full Text: DOI OpenURL References: [1] Hassan B, Kuntz D, Potter DL. Coupled fluid/thermal prediction of ablating hypersonic vehicles. AIAA Paper 98-0168, AIAA; 1978. [2] Kuntz, D.; Hassan, B.; Potter, D. L., Predictions of ablating hypersonic vehicles using an iterative coupled fluid/thermal approach, J Thermophys Heat Transfer, 15, 2, 129-139, (2001) [3] Chen, Y.-K.; Milos, F., Navier-Stokes solutions with finite rate ablation for planetary mission Earth reentries, J Spacecraft Rockets, 42, 961-970, (2005) [4] Gosse R, Candler G. Ablation modeling of electro-magnetic launched projectile for access to space. AIAA Paper 2007-1210. [5] Sakai, T.; Sawada, K., Calculation of nonequilibrium radiation from a blunt-body shock layer, J Thermophys Heat Transfer, 15, 1, 99-105, (2001) [6] Suzuki, T.; Furudate, M.; Sawada, K., Unified calculation of hypersonic flowfield for a reentry vehicle, J Thermophys Heat Transfer, 16, 1, 94-100, (2002) [7] Matsuyama, S.; Ohnishi, N.; Sasoh, A.; Sawada, K., Numerical simulation of galileo probe entry flowfield with radiation and ablation, J Thermophys Heat Transfer, 19, 1, 28-35, (2005) [8] Gnoffo PA, Johnston CO, Thompson RA. Implementation of radiation, ablation, and free energy minimization modules for coupled simulations of hypersonic flow. AIAA Paper 2009-1399, AIAA; 2009. [9] Johnston, C. O.; Gnoffo, P. A.; Sutton, K., Influence of ablation on radiative heating for Earth entry, J Spacecraft Rockets, 46, 3, 481-491, (2009) [10] Bauman, P. T.; Stogner, R.; Carey, G. F.; Schulz, K. W.; Upadhyay, R.; Maurente, A., Loose-coupling algorithm for simulating hypersonic flows with radiation and ablation, AIAA J Spacecraft Rockets, 48, 1, 72-80, (2011) [11] Wright, M.; Candler, G. V.; Bose, D., Data-parallel line relaxation method for the Navier-Stokes equations, AIAA J, 36, 9, 1603-1609, (1998) [12] Kirk BS, Bova SW, Bond RB. A streamline-upwind Petrov-Galerkin finite element scheme for non-ionized hypersonic flows in thermochemical nonequilibrium. AIAA Paper 2011-134; 2011. [13] MacLean M, Marschall J, Driver DM. Finite-rate surface chemistry model, II: coupling to viscous Navier-Stokes code. AIAA 2011-3784; 2011. [14] Upadhyay R, Bauman PT, Stogner R, Schulz KW, Ezekoye O. Steady-state ablation model coupling with hypersonic flow. AIAA Paper 2010-1176. [15] Kirk, B. S.; Peterson, J. W.; Stogner, R. H.; Carey, G. F., Libmesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations, Eng Comput, 22, 3, 237-254, (2006) [16] Anderson, J. D., Hypersonic and high temperature gas dynamics, (2006), AIAA Reston, Virginia [17] Gnoffo PA, Gupta RN, Shinn JL. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium. Tech rep, National Aeronautics and Space Administration, nASA TP-2867; 1989. [18] Spalart, P. R.; Allmaras, S. A., A one-equation turbulence model for aerodynamic flows, La Rech Aerospatiale, 1, 5-21, (1994), [see also AIAA Paper 1992-439] [19] Allmaras SR. Personal communication via email with T. Oliver; 2007. [20] Oliver TA, Darmofal DL. Impact of turbulence model irregularity on high-order discretizations. AIAA Paper 2009-953. [21] Tauber ME. A review of hgih-speed, convective, heat-transfer computation methods. Tech rep, National Aeronautics and Space Administration, nASA TP-2914; 1989. [22] Campbell CH, King RA, Berry SA, Kegerise MA, Horvath TJ. Roles of engineering correlations in hypersonic entry boundary layer transition prediction. In: 48th AIAA aerospace sciences meeting, AIAA Paper 2010-247; 2010. [23] Candler GV. The computation of weakly ionized hypersonic flows in thermochemical nonequilibrium. Ph.D. thesis, Stanford University; 1988. [24] Park, C., Nonequilibrium hypersonic aerotherodynamics, (1990), John Wiley & Sons [25] Blottner FG, Johnson M, Ellis M. Chemically reacting viscous flow program for multi-component gas mixtures. Tech Rep Sandia Laboratories Report No. SC-RR-70-754, Sandia National Laboratories, Albuquerque, NM; 1971. [26] Wright MJ. A family of data-parallel relaxation methods for the Navier-Stokes equations. Ph.D. thesis, The University of Minnesota; 1997. [27] Vincenti, Kruger. Introduction to physical gas dynamics. Krieger; 1965. [28] Barnhardt MD. Modeling and simulation of high-speed wake flows. Ph.D. thesis, University of Minnesota; 2009. [29] Park, C., Assessment of two-temperature kinetic model for ionizing air, J Thermophys Heat Transfer, 3, 3, 233-244, (1989) [30] Olejniczak J. Computational and experimental study of nonequilibrium chemsitry in hypersonic flows. Ph.D. thesis, The University of Minnesota; 1997. [31] Millikan, R. C.; White, D. R., Systematics of vibrational relaxation, J Chem Phys, 39, 12, 3209-3213, (1963) [32] Erwin T, Anderson WK, Kapadiaz S, Wang L. Three dimensional stabilized finite elements for compressible Navier-Stokes. In: 20th AIAA computational fluid dynamics conference, AIAA 2011-3411; 2011. [33] Aliabadi SK. Parallel finite element computations in aerospace applications. Ph.D. thesis, The University of Minnesota; 1994. [34] Aliabadi, S. K.; Tezduyar, T. E., Parallel fluid dynamics computations in aerospace applications, Int J Numer Methods Fluids, 21, 783-805, (1995) · Zbl 0862.76033 [35] LeBeau GJ. The finite element computation of compressible flows. Master’s thesis, The University of Minnesota; 1990. [36] Shakib, F.; Hughes, T. J.R.; Johan, Z., A new finite element formulation for computational fluid dynamics: X. the compressible Euler and Navier-Stokes equations, Comput Methods Appl Mech Eng, 89, 141-219, (1991) [37] Hughes, T. J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: IV. A discontinuity operator for multidimensional advective-diffusive systems, Comput Methods Appl Mech Eng, 58, 329-336, (1986) · Zbl 0587.76120 [38] Chalot, F.; Hughes, T. J.R.; Shakib, F., Symmetrization of conservation laws with entropy for high-temperature hypersonic computations, Comp Syst Eng, 1, 2-4, 495-521, (1990) [39] Upadhyay R, Bauman PT, Stogner R, Schulz KW, Ezekoye O. Steady-state ablation model coupling with hypersonic flow. AIAA Paper 2010-1176; 2010. [40] Malaya N, Estacio-Hiroms K, Stogner RH, Schulz KW, Bauman PT, Carey GF. : a library for verification using manufactured and analytical solutions, engineering with computers; in press. doi: http://dx.doi.org/10.1007/s00366-012-0267-9. [41] Oliver TA, Estacio-Hiroms KC, Malaya N, Carey GF. Manufactured solutions for the Favre-averaged Navier-Stokes equations with eddy-viscosity turbulence models. In: 50th AIAA aerospace sciences meeting. AIAA-2012-0080; 2012. [42] Balay S, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, et al. PETSc users manual. Tech Rep ANL-95/11 - Revision 2.3.0, Argonne National Laboratory; 2004. [43] Barrett, R.; Berry, M.; Chan, T. F.; Demmel, J.; Donato, J. M.; Dongarra, J., Templates for the solution of linear systems: building blocks for iterative methods, (1994), Society for Industrial and Applied Mathematics Philadelphia [44] Golub, G. H.; Van Loan, C. F., Matrix computations, (1996), The Johns Hopkins University Press · Zbl 0865.65009 [45] Park, C.; Jaffe, R. L.; Partridge, H., Chemical-kinetic parameters of hyperbolic Earth entry, J Thermophys Heat Transfer, 15, 1, 76-90, (2001) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.