×

Ground state periodic solutions for Duffing equations with superlinear nonlinearities. (English) Zbl 1417.32019

Summary: In this paper, we study a general second order differential equation with superlinear nonlinearity. We obtain ground state and geometrically distinct periodic solutions of this equation by a generalized Nehari manifold approach. In particular, our result extends some existing ones.

MSC:

32G34 Moduli and deformations for ordinary differential equations (e.g., Knizhnik-Zamolodchikov equation)
34C25 Periodic solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bibikov YN, Pirogov MV: Invariant tori of the Duffing equation.Differ. Equ. 2006,42(8):1069-1075. · Zbl 1155.34324 · doi:10.1134/S0012266106080015
[2] Chen T, Liu W, Zhang J: The existence of anti-periodic solutions for high order Duffing equation.J. Appl. Math. Comput. 2008, 27:271-280. · Zbl 1168.34030 · doi:10.1007/s12190-008-0056-1
[3] Dizaji AF, Sepiani HA, Ebrahimi F, Allahverdizadeh A, Sepiani HA: Schauder fixed point theorem based existence of periodic solution for the response of Duffing’s oscillator.J. Mech. Sci. Technol. 2009, 23:2299-2307. · doi:10.1007/s12206-009-0501-6
[4] Liu B: Boundedness of solutions for semilinear Duffing equations.J. Differ. Equ. 1998, 145:119-144. · Zbl 0913.34032 · doi:10.1006/jdeq.1997.3406
[5] Mi L: Lagrange stability via the twist theorem.Adv. Math. 2004,33(4):477-488. · Zbl 1481.37046
[6] Ortega R: Asymmetric oscillators and twist mappings.J. Lond. Math. Soc. 1996,53(2):325-342. · Zbl 0860.34017 · doi:10.1112/jlms/53.2.325
[7] Yuan X: Lagrange stability for asymmetric Duffing equations.Nonlinear Anal. 2001, 43:137-151. · Zbl 0970.37045 · doi:10.1016/S0362-546X(99)00170-4
[8] del Pino MA, Manásevich RF: Infinitely manyT-periodic solutions for a problem arising in nonlinear elasticity.J. Differ. Equ. 1993, 103:260-277. · Zbl 0781.34032 · doi:10.1006/jdeq.1993.1050
[9] Fonda A, Manásevich R, Zanolin F: Subharmonic solutions for some second order differential equations with singularities.SIAM J. Math. Anal. 1993, 24:1294-1311. · Zbl 0787.34035 · doi:10.1137/0524074
[10] Siegel CL, Moser J: Lecture on Celestial Mechanics. Springer, Berlin; 1971. · Zbl 0312.70017 · doi:10.1007/978-3-642-87284-6
[11] Mawhin, J.; Furi, M. (ed.); Zecca, P. (ed.), Topological degree and boundary value problems for nonlinear differential equations, 74-142 (1993), Berlin · Zbl 0798.34025 · doi:10.1007/BFb0085076
[12] del Pino MA, Manásevich RF, Montero A: T-Periodic solutions for some second order differential equations with singularities.Proc. R. Soc. Edinb. A 1992, 120:231-243. · Zbl 0761.34031 · doi:10.1017/S030821050003211X
[13] Yan P, Zhang M: Higher order nonresonance for differential equations with singularities.Math. Methods Appl. Sci. 2003, 26:1067-1074. · Zbl 1031.34040 · doi:10.1002/mma.413
[14] Zhang M: Periodic solutions of Liénard equations with singular forces of repulsive type.J. Math. Anal. Appl. 1996, 203:254-269. · Zbl 0863.34039 · doi:10.1006/jmaa.1996.0378
[15] Zhang M: A relationship between the periodic and the Dirichlet BVPs of singular differential equations.Proc. R. Soc. Edinb. A 1998, 128:1099-1114. · Zbl 0918.34025 · doi:10.1017/S0308210500030080
[16] Torres PJ: Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem.J. Differ. Equ. 2003, 190:643-662. · Zbl 1032.34040 · doi:10.1016/S0022-0396(02)00152-3
[17] Pankov A: Periodic nonlinear Schrödinger equation with application to photonic crystals.Milan J. Math. 2005, 73:259-287. · Zbl 1225.35222 · doi:10.1007/s00032-005-0047-8
[18] Esmailzadeh E, Nakhaie-Jazar G: Periodic solutions of a Mathieu-Duffing type equation.Int. J. Non-Linear Mech. 1997, 32:905-912. · Zbl 0881.34064 · doi:10.1016/S0020-7462(96)00119-9
[19] Szulkin A, Weth T: Ground state solutions for some indefinite problems.J. Funct. Anal. 2009, 12:3802-3822. · Zbl 1178.35352 · doi:10.1016/j.jfa.2009.09.013
[20] Chen G, Ma S: Ground state and geometrically distinct solitons of discrete nonlinear Schrödinger equations with saturable nonlinearities.Stud. Appl. Math. 2013, 131:389-413. · Zbl 1277.35313 · doi:10.1111/sapm.12016
[21] Fang X-D, Szulkin A: Multiple solutions for a quasilinear Schrödinger equation.J. Differ. Equ. 2013, 254:2015-2032. · Zbl 1263.35113 · doi:10.1016/j.jde.2012.11.017
[22] Mai, A.; Zhou, Z., Ground state solutions for the periodic discrete nonlinear Schrödinger equations with superlinear nonlinearities, No. 2013 (2013) · Zbl 1291.35356
[23] Willem M: Minimax Theorems. Birkhäuser, Boston; 1996. · Zbl 0856.49001 · doi:10.1007/978-1-4612-4146-1
[24] Struwe M: Variational Methods. 2nd edition. Springer, Berlin; 1996. · Zbl 0864.49001 · doi:10.1007/978-3-662-03212-1
[25] Rabinowitz, PH, CBMS Reg. Conf. Ser. Math. 65 (1986), Providence
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.