×

Impulse response function identification of linear mechanical systems based on Kautz basis expansion with multiple poles. (English) Zbl 1482.93130

Summary: The impulse response function (IRF) identification of linear mechanical systems is important in many engineering applications. This paper proposes a novel IRF identification method of linear systems based on Kautz basis expansion with multiple poles. In order to reduce the parameters to be identified, the IRF is expanded in terms of orthogonal Kautz functions with multiple poles, and the poles in Kautz functions should be optimised. This allows the identification of IRF for linear mechanical systems operated under more than one mode, such as systems under the white noise excitation or the swept frequency excitation with a wide range of frequency, and can improve the identification accuracy. Furthermore, based on the backpropagation through-time technique and the expectation maximisation algorithm, a pole optimisation algorithm is presented in this paper. The simulation studies verify the effectiveness of the proposed IRF identification method.

MSC:

93B30 System identification
93C27 Impulsive control/observation systems
93C05 Linear systems in control theory
93B55 Pole and zero placement problems
70Q05 Control of mechanical systems

Software:

SHOGUN
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bach, F. R.; Lanckriet, G. R.; Jordan, M. I.; Banff, Alta, Multiple kernel learning, conic duality, and the SMO algorithm, Proceedings of the twenty-first international conference on Machine learning, 41-48 (2004), Canada: ICML 2004, Canada
[2] Bilmes, J. A., A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models, International Computer Science Institute, 4, 510, 126 (1998)
[3] Brown, D. L.; Allemang, R. J.; Zimmerman, R.; Mergeay, M., Parameter estimation techniques for modal analysis (1979)
[4] Caicedo, J. M.; Dyke, S. J.; Johnson, E. A., Natural excitation technique and eigensystem realization algorithm for phase I of the IASC-ASCE benchmark problem: Simulated data, Journal of Engineering Mechanics, 130, 1, 49-60 (2004)
[5] Campello, R. J.; Do Amaral, W. C.; Favier, G., A note on the optimal expansion of Volterra models using Laguerre functions, Automatica, 42, 4, 689-693 (2006) · Zbl 1114.93043
[6] Campello, R. J.; Favier, G.; Do Amaral, W. C., Optimal expansions of discrete-time Volterra models using Laguerre functions, Automatica, 40, 5, 815-822 (2004) · Zbl 1050.93031
[7] Chong, E. K.; Zak, S. H., An introduction to optimization (2013), Wiley · Zbl 1266.90001
[8] da Rosa, A.; Campello, R. J.; Amaral, W. C., Choice of free parameters in expansions of discrete-time Volterra models using Kautz functions, Automatica, 43, 6, 1084-1091 (2007) · Zbl 1282.93089
[9] da Rosa, A.; Campello, R. J.; Amaral, W. C., Exact search directions for optimization of linear and nonlinear models based on generalized orthonormal functions, IEEE Transactions on Automatic Control, 54, 12, 2757-2772 (2009) · Zbl 1367.93134
[10] Da Silva, S., Non-parametric identification of mechanical systems by Kautz filter with multiple poles, Mechanical Systems and Signal Processing, 25, 4, 1103-1111 (2011)
[11] Da Silva, S.; Dias Júnior, M.; Lopes Junior, V., Identification of mechanical systems through Kautz filter, Journal of Vibration and Control, 15, 6, 849-865 (2009) · Zbl 1273.93045
[12] Demirli, R.; Saniie, J., Model-based estimation of ultrasonic echoes. Part I: Analysis and algorithms, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 48, 3, 787-802 (2001)
[13] Demirli, R.; Saniie, J., Model-based estimation of ultrasonic echoes. Part II: Nondestructive evaluation applications, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 48, 3, 803-811 (2001)
[14] Feder, M.; Weinstein, E., Parameter estimation of superimposed signals using the EM algorithm, IEEE Transactions on Acoustics, Speech, and Signal Processing, 36, 4, 477-489 (1988) · Zbl 0649.93062
[15] Gönen, M.; Alpaydın, E., Multiple kernel learning algorithms, Journal of Machine Learning Research, 12, Jul, 2211-2268 (2011) · Zbl 1280.68167
[16] Guillaume, P.; Verboven, P.; Vanlanduit, S.; Van Der Auweraer, H.; Peeters, B., A poly-reference implementation of the least-squares complex frequency-domain estimator, Proceedings of IMAC, 183-192 (2003), Kissimmee, FL: A Conference & Exposition on Structural Dynamics, Society for Experimental Mechanics, Kissimmee, FL
[17] Heuberger, P. S. C.; Van den Hof, P. M. J.; Bosgra, O. H., A generalized orthonormal basis for linear dynamical systems, IEEE Transactions on Automatic Control, 40, 3, 451-465 (1995) · Zbl 0835.93011
[18] Heuberger, P. S. C.; van den Hof, P. M. J.; Wahlberg, B., Modelling and identification with rational orthogonal basis functions (2005), Berlin: Springer, Berlin
[19] Hoi, S. C.; Jin, R.; Zhao, P.; Yang, T., Online multiple kernel classification, Machine Learning, 90, 2, 289-316 (2013) · Zbl 1260.68332
[20] Ibrahim, S. R.; Mikulcik, E. C., A time domain modal vibration test technique, Shock & Vibration Bulletin, 43, 4, 21-37 (1973)
[21] Jin, R.; Hoi, S. C.; Yang, T., Online multiple kernel learning: Algorithms and mistake bounds, International conference on algorithmic learning theory, 390-404 (2010), Berlin: Springer, Berlin · Zbl 1306.68131
[22] Juang, J. N.; Pappa, R. S., An eigensystem realization algorithm for modal parameter identification and model reduction, Journal of Guidance, Control, and Dynamics, 8, 5, 620-627 (1985) · Zbl 0589.93008
[23] Kibangou, A. Y.; Favier, G.; Hassani, M. M., Laguerre-Volterra filters optimization based on Laguerre spectra, EURASIP Journal on Advances in Signal Processing, 2005, 17, 391385 (2005) · Zbl 1127.94320
[24] Ljung, L., System identification (1999), Wiley · Zbl 1431.93015
[25] Mathews, J.; Walker, R. L., Mathematical methods of physics, 501 (1970), New York, NY: WA Benjamin, New York, NY
[26] Mohanty, P.; Rixen, D. J., A modified Ibrahim time domain algorithm for operational modal analysis including harmonic excitation, Journal of Sound and Vibration, 275, 1, 375-390 (2004)
[27] Moré, J. J.; Watson, G. A., The Levenberg-Marquardt algorithm: Implementation and theory, Numerical analysis, 105-116 (1978), Berlin: Springer, Berlin · Zbl 0372.65022
[28] Morvan, R.; Tanguy, N.; Vilbé, P.; Calvez, L. C., Pertinent parameters for Kautz approximation, Electronics Letters, 36, 8, 769-771 (2000)
[29] Ninness, B.; Gustafsson, F., A unifying construction of orthonormal bases for system identification, IEEE Transactions on Automatic Control, 42, 4, 515-521 (1997) · Zbl 0874.93034
[30] Oliveira, G. H.; da Rosa, A.; Campello, R. J.; Machado, J. B.; Amaral, W. C., An introduction to models based on Laguerre, Kautz and other related orthonormal functions - Part I: Linear and uncertain models, International Journal of Modelling, Identification and Control, 14, 1-2, 121-132 (2011)
[31] Oliveira, G. H.; da Rosa, A.; Campello, R. J.; Machado, J. B.; Amaral, W. C., An introduction to models based on Laguerre, Kautz and other related orthonormal functions - Part II: Non-linear models, International Journal of Modelling, Identification and Control, 16, 1, 1-14 (2012)
[32] Rugh, W. J., Nonlinear system theory (1981), Baltimore: Johns Hopkins University Press, Baltimore · Zbl 0666.93065
[33] Schetzen, M., The Volterra and Wiener theories of nonlinear systems (1980), Malabar: Krieger, Malabar · Zbl 0501.93002
[34] Sonnenburg, S.; Rätsch, G.; Schäfer, C.; Schölkopf, B., Large scale multiple kernel learning, Journal of Machine Learning Research, 7, Jul, 1531-1565 (2006) · Zbl 1222.90072
[35] Vold, H.; Kundrat, J.; Rocklin, G. T.; Russell, R., A multi-input modal estimation algorithm for mini-computers (1982)
[36] Wahlberg, B., System identification using Kautz models, IEEE Transactions on Automatic Control, 39, 6, 1276-1282 (1994) · Zbl 0807.93065
[37] Wahlberg, B.; Mäkilä, P. M., On approximation of stable linear dynamical systems using Laguerre and Kautz functions, Automatica, 32, 5, 693-708 (1996) · Zbl 0856.93017
[38] Westwick, D. T.; Kearney, R. E., Separable least squares identification of nonlinear Hammerstein models: Application to stretch reflex dynamics, Annals of Biomedical Engineering, 29, 8, 707-718 (2001)
[39] Wu, C. J., On the convergence properties of the EM algorithm, The Annals of Statistics, 95-103 (1983) · Zbl 0517.62035
[40] Xu, Z.; Jin, R.; Yang, H.; King, I.; Lyu, M. R., Simple and efficient multiple kernel learning by group lasso, Proceedings of the 27th international conference on machine learning (ICML-10), 1175-1182 (2010), Haifa, Israel
[41] Zhou, W.; Chelidze, D., Generalized eigenvalue decomposition in time domain modal parameter identification, Journal of Vibration and Acoustics, 130, 1, 011001 (2008)
[42] Zhou, Z. H., Ensemble methods: Foundations and algorithms (2012), Chapman & Hall/CRC Data Mining and Knowledge Discovery Serie, Taylor & Francis, 2012: CRC press, Chapman & Hall/CRC Data Mining and Knowledge Discovery Serie, Taylor & Francis, 2012
[43] Zhou, Z. H., Machine learning (2016), Tsinghua University Press
[44] Zhou, Z. H.; Jiang, Y.; Chen, S. F., Extracting symbolic rules from trained neural network ensembles, Ai Communications, 16, 1, 3-15 (2003) · Zbl 1102.68609
[45] Zhou, Z. H.; Wu, J.; Tang, W., Ensembling neural networks: Many could be better than all, Artificial Intelligence, 137, 1-2, 239-263 (2002) · Zbl 0995.68077
[46] Zhou, Z. H.; Yu, Y., Ensembling local learners through multimodal perturbation, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35, 4, 725-735 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.