×

Numerical solution of the conformable differential equations via shifted Legendre polynomials. (English) Zbl 1480.65189

Summary: In this paper, we are concerned with the linear and nonlinear multi-term fractional differential equations. Firstly, a new approximate formula of the conformable fractional derivative is derived. The proposed formula is based on the shifted Legendre polynomials. The spectral Legendre collocation method is presented for solving multi-term fractional differential equations. Here, the fractional derivatives are described in the conformable sense. Convergence analysis and estimate an error upper bound of the obtained approximate formula are given. The validity and the applicability of the proposed technique are shown by numerical examples.

MSC:

65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
33C47 Other special orthogonal polynomials and functions
34A08 Fractional ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abd-Elhameed, W. M.; Youssri, Y. H., Spectral solutions for fractional differential equations via a Novel Lucas operational matrix of fractional derivatives, Rom. J. Phys., 61, 795-813 (2016)
[2] Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279, 57-66 (2015) · Zbl 1304.26004 · doi:10.1016/j.cam.2014.10.016
[3] Acan, O.; Firat, O.; Keskin, Y.; Oturanc, G., Conformable variational iteration method, New Trend. Math. Sci., 5, 172-178 (2017) · doi:10.20852/ntmsci.2017.135
[4] Allahviranloo, T.; Gouyandeh, Z.; Armand, A., Numerical solutions for fractional differential equations by Tau-Collocation method, Appl. Math. Comput., 271, 979-990 (2015) · Zbl 1410.65278
[5] Alshbool, M. H.T.; Bataineh, A. S.; Hashim, I.; Rasit Isik, O., Solution of fractional-order differential equations based on the operational matrices of new fractional Bernstein functions, JKSUS, 29, 1-18 (2017)
[6] Anderson, D. R.; Ulness, D. J., Properties of the Katugampola fractional derivative with potential application in quantum mechanics, J. Math. Phys., 56 (2015) · Zbl 1323.26008 · doi:10.1063/1.4922018
[7] Bota, C.; Caruntu, B., Analytical approximate solutions for quadratic Riccati differential equation of fractional order using the polynomial least squares method, Chaos Solitons Fractals, 102, 339-345 (2017) · Zbl 1374.34307 · doi:10.1016/j.chaos.2017.05.002
[8] Cang, J.; Tan, T.; Xu, H.; Liao, S. J., Series solutions of non-linear riccati differential equations with fractional order, Chaos Solitons Fractals, 40, 1-9 (2009) · Zbl 1197.34006 · doi:10.1016/j.chaos.2007.04.018
[9] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods Fundamentals in Single Domains (2006), Springer-Verlag: Springer-Verlag, Berlin · Zbl 1093.76002
[10] Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S., A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Comput. Math. Appl., 62, 2364-2373 (2011) · Zbl 1231.65126 · doi:10.1016/j.camwa.2011.07.024
[11] Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S., Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations, Appl. Math. Model., 35, 5662-5672 (2011) · Zbl 1228.65126 · doi:10.1016/j.apm.2011.05.011
[12] Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S., A new Jacobi operational matrix: An application for solving fractional differential equations, Appl. Math. Model., 36, 4931-4943 (2012) · Zbl 1252.34019 · doi:10.1016/j.apm.2011.12.031
[13] Doha, E. H.; Abd-Elhameed, W. M.; Youssri, Y. H., Fully Legendre spectral galerkin algorithm for solving linear one-dimensional telegraph type equation, Int. J. Comput. Meth. · Zbl 1489.65140 · doi:10.1142/S0219876218501189
[14] Hesameddini, E.; Asadollahifar, E., Numerical solution of multi-order fractional differential equations via the sinc collocation method, IJNAO, 5, 37-48 (2015) · Zbl 1330.65105
[15] Isah, A.; Phang, C., New operational matrix of derivative for solving non-linear fractional differential equations via Genocchi polynomials, JKSUS, 31, 1-7 (2019) · doi:10.1016/j.jksus.2017.02.001
[16] Jafari, H.; Kadkhoda, N.; Tajadodi, H.; Hosseini, S. A., Homotopy perturbation pade technique for solving fractional riccati differential equations, Int. J. Nonlinear Sci. Numer. Simul., 11, 271-5 (2010) · Zbl 1401.34011
[17] Jafari, H.; Tajadodi, H.; Baleanu, D., A modified variational iteration method for solving fractional Riccati differential equation by Adomian polynomials, Fract. Calc. Appl. Anal., 16, 109-122 (2013) · Zbl 1312.34016 · doi:10.2478/s13540-013-0008-9
[18] Jafari, H.; Tajadodi, H.; Baleanu, D., A numerical approach for fractional order Riccati differential equation using B-spline operational matrix, Fract. Calc. Appl. Anal., 18, 387-399 (2015) · Zbl 1308.65025 · doi:10.1515/fca-2015-0025
[19] Kazemi, B. F.; Jafari, H., Error estimate of the MQ-RBF collocation method for fractional differential equations with Caputo-Fabrizio derivative, Math. Sci., 11, 297-305 (2017) · Zbl 1407.65084 · doi:10.1007/s40096-017-0232-2
[20] Khader, M. M., The use of generalized Laguerre polynomials in spectral methods for solving fractional delay differential equations, J. Comput. Nonlinear Dynam., 8, 1-5 (2013) · doi:10.1115/1.4024852
[21] Khader, M. M., Numerical treatment for solving fractional logistic differential equation, Diff. Equat. Dynam. Syst., 24, 99-107 (2016) · Zbl 1333.65077 · doi:10.1007/s12591-014-0207-9
[22] Khader, M. M.; El Danaf, T. S.; Hendy, A. S., Efficient spectral collocation method for solving multi-term fractional differential equations based on the generalized Laguerre polynomials, J. Food Compos. Anal., 3, 1-14 (2012) · Zbl 1488.65688
[23] Khalil, R.; Horani, M. A.; Yousef, A.; Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264, 65-70 (2014) · Zbl 1297.26013 · doi:10.1016/j.cam.2014.01.002
[24] Khalil, H.; Khan, R. A.; Al-Smadi, M. H.; Freihat, A. A.; Shawagfeh, N., New operational matrix for shifted legendre polynomials and fractional differential equations with variable coefficients, Punjab Univ. J. Math., 47, 1-23 (2015) · Zbl 1337.65167
[25] Khitab, A.; Lorente, S.; Ollivier, J. P., Predictive model for chloride penetration through concrete, Mag. Concrete Res., 57, 9, 511-520 (2005) · doi:10.1680/macr.2005.57.9.511
[26] Lebedev, N. N.; Silverman (Translator), R. A., Special Functions and Their Applications (1965), Prentice Hall, Englewood Cliffs, NJ · Zbl 0131.07002
[27] Li, Y., Solving a nonlinear fractional differential equation using Chebyshev wavelets, Commun. Nonlinear Sci. Numer. Simul., 15, 2284-2292 (2010) · Zbl 1222.65087 · doi:10.1016/j.cnsns.2009.09.020
[28] Li, X., Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method, Commun. Nonlinear Sci. Numer. Simul., 17, 3934-3946 (2012) · Zbl 1250.65094 · doi:10.1016/j.cnsns.2012.02.009
[29] Mohammadi, F.; Cattani, C., A generalized fractional-order Legendre wavelet Tau method for solving fractional differential equations, J. Comput. Appl. Math., 339, 306-316 (2018) · Zbl 1464.65079 · doi:10.1016/j.cam.2017.09.031
[30] Mohammadi, F.; Mohyud-Din, S. T., A fractional-order Legendre collocation method for solving the Bagley-Torvik equations, Adv. Diff. Equ., 269, 2-14 (2016) · Zbl 1422.65137
[31] Odibat, Z.; Momani, S., Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order, Chaos Solitons Fractals, 36, 167-174 (2008) · Zbl 1152.34311 · doi:10.1016/j.chaos.2006.06.041
[32] Parand, K.; Delkhosh, M., Operational matrices to solve nonlinear Riccati differential equations of arbitrary order, S. Pb. Phys. Math. J., 3, 242-254 (2017)
[33] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press, New York · Zbl 0918.34010
[34] Podlubny, I., Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5, 367-386 (2002) · Zbl 1042.26003
[35] Rehman, M.; Khan, R. A., The Legendre wavelet method for solving fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 16, 4163-4173 (2011) · Zbl 1222.65063 · doi:10.1016/j.cnsns.2011.01.014
[36] Saadatmandi, A.; Dehghan, M., A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59, 1326-1336 (2010) · Zbl 1189.65151 · doi:10.1016/j.camwa.2009.07.006
[37] Thomas, M. D.; Bamforth, P. B., Modelling chloride diffusion in concrete: Effect of fly ash and slag, Cem. Concr. Res., 29, 4, 487-495 (1999) · doi:10.1016/S0008-8846(98)00192-6
[38] Unal, E.; Gokdgan, A., Solution of conformable fractional ordinary differential equations via differential transform method, Optik, 128, 264-273 (2017) · doi:10.1016/j.ijleo.2016.10.031
[39] Yang, Y., Solving a nonlinear multi-order fractional differential equation using Legendre Pseudo-Spectral method, Appl. Math., 4, 113-118 (2013) · doi:10.4236/am.2013.41020
[40] Yang, S.; Wang, L.; Zhang, S., Conformable derivative: Application to non-Darcian flow in low-permeability porous media, Appl. Math. Lett., 79, 105-110 (2018) · Zbl 1459.76154 · doi:10.1016/j.aml.2017.12.006
[41] Youssri, Y. H.; Abd-Elhameed, W. M., Numerical spectral Legendre-Galerkin algorithm for solving time fractional telegraph equation, Rom. J. Phys., 63, 1-16 (2018)
[42] Yuzbasi, S., Numerical solutions of fractional Riccati type differential equations by means of the bernstein polynomials, Appl. Math. Comput., 219, 6328-6343 (2013) · Zbl 1280.65075
[43] Zhao, D.; Pan, X.; Luo, M., A new framework for multivariate general conformable fractional calculus and potential applications, Physica A, 510, 271-280 (2018) · Zbl 1514.26004 · doi:10.1016/j.physa.2018.06.070
[44] Zhou, H. W.; Yang, S.; Zhang, S. Q., Conformable derivative approach to anomalous diffusion, Physica A, 491, 1001-1013 (2018) · Zbl 1514.60116 · doi:10.1016/j.physa.2017.09.101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.