×

Univalent functions in cyclic vectors in \(Q_p\) space. (English) Zbl 1297.30075

Let \(H(\mathbb D)\) be the set of holomorphic functions on the open unit disk \(\mathbb D\) and \(X\subset H(\mathbb D)\) be a Banach space such that the polynomials are norm (or weak\(^*\)) dense in \(X\). A cyclic vector in \(X\) is a function \(f\), the products of which with polynomials are dense in \(X\). The space \(Q_p\), \( 0\leq p<\infty\), consists of functions \(f\in H(\mathbb D)\) such that
\[ \|f\|_{Q_p}=\sup_{a\in{\mathbf D}}\bigg(\int_{\mathbf D}|f'(z)|^2\bigg(1-\bigg|\frac{a-z}{1-{\overline a}z}\bigg|^2\bigg)^p \mathrm{d}m(z)\bigg)^{1/2}<\infty, \] where \(m\) is the Lebesgue area measure on \(\mathbb D\), equipped with the norm \(\|f\|_*=|f(0)|+\|f\|_{Q_p}\). Note that \(Q_0\) is the Dirichlet space, \(Q_1=\mathrm{BMOA}\) and the \(Q_p\) are Bloch spaces when \(1<p<\infty\). The space \(Q_{p,0}\subset Q_p\) consists of the functions \(f\in Q_p\) such that \[ \lim_{|a|\to 1}\bigg(\int_{\mathbf D}|f'(z)|^2\bigg(1-\bigg|\frac{a-z}{1-{\overline a}z}\bigg|^2\bigg)^p \mathrm{d}m(z)\bigg)^{1/2}=0. \] The authors show that a univalent function \(f\) in \(Q_p\) (resp. \(Q_{p,0}\)) is cyclic in \(Q_p\) (resp. \(Q_{p,0}\)) if and only if it does not vanish on \(\mathbb D\).

MSC:

30H10 Hardy spaces
30H25 Besov spaces and \(Q_p\)-spaces
46E15 Banach spaces of continuous, differentiable or analytic functions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aleman, A., Carleson, M., Persson, A.M.: Preduals of $$Q_p$$ Q p -spaces. Complex Var. Elliptic Equ. 52, 605–628 (2007) · Zbl 1197.30017
[2] Anderson, J.M., Fernandez, J.L., Shields, A.L.: Inner functions in the cyclic vectors in the Bloch space. Trans. Am. Math. Soc. 323, 429–448 (1990) · Zbl 0768.46003
[3] Baernstein II, A.: Analytic function of bounded mean oscillation. In: Brannan, D., Clume, J. (eds.) Aspects of Contemporary Complex Analysis. Academic Press, London (1980) · Zbl 0492.30026
[4] Beurling, A.: On two problems concering linear transformations in Hilbert space. Acta Math. 81, 239–255 (1949) · Zbl 0033.37701
[5] Brown, L., Shields, A.L.: Cyclic vectors in the Dirichlet space. Trans. Am. Math. Soc. 285(1), 269–304 (1984) · Zbl 0517.30040
[6] Brown, L., Shields, A.L.: Multipliers and cyclic vectors in the Bloch space. Michigan Math. J. 38(1), 141–146 (1991) · Zbl 0749.30023
[7] Duren, P.: Theory of $$H\^p$$ H p Spaces. Academic Press, New York (1970) · Zbl 0215.20203
[8] El-Fallash, O., Kellay, K., Ransford, T.: On the Brown–Shields conjecture for cyclicity in the Dirichlet space. Adv. Math. 222, 2196–2214 (2009) · Zbl 1185.47007
[9] El-Fallash, O., Kellay, K., Ransford, T.: Cantor sets and cyclicity in weighted Dirichlet spaces. J. Math. Anal. Appl. 372, 565–573 (2010) · Zbl 1203.31015
[10] El-Fallash O., Kellay K., Ransford T.: Invariant subspaces of the Dirichlet space, Hilbert spaces of analytic functions. CRM Proceedings and Lecture Notes, vol. 51. Amererican Mathematical Society, Providence, pp. 133–141 (2010) · Zbl 1221.47016
[11] Garnett, J.: Bounded analytic functions. Academic Press, New York (1981) · Zbl 0469.30024
[12] Pavlović, M., Xiao, J.: Splitting planar isoperimetric inequality through preduality of $$Q_p$$ Q p , $$0&lt;p&lt;1$$ 0 &lt; p &lt; 1 . J. Funct. Anal. 233, 40–59 (2006) · Zbl 1097.30039
[13] Richter, S., Sundberg, C.: Multipliers and invariant subspaces in the Dirichlet space. J. Oper. Theory. 28, 167–186 (1992) · Zbl 0810.46057
[14] Ross, W.T.: The classical Dirichlet space. Contemp. Math. 393, 171–197 (2006) · Zbl 1135.31007
[15] Wirths, K.J., Xiao, J.: Recongnizing $$Q_{p,0}$$ Q p , 0 functions per Dirichlet space structure. Bull. Belg. Math. Soc. 8, 47–59 (2001) · Zbl 0989.30024
[16] Xiao, J.: Holomorphic Q classes. Lecture Notes in Mathematics, vol. 1767. Springer, Berlin (2001) · Zbl 0983.30001
[17] Ye, S.: Cyclic vectors in the $$BMOA$$ B M O A space. Acta Math. Sci. Ser A Chin. Ed. 17(3), 356–360 (1997). (in Chinese) · Zbl 0955.30028
[18] Ye, S.: Cyclic vectors in the $$\(\backslash\)alpha $$ {\(\alpha\)} -Bloch spaces. Rocky Mt. J. Math. 36(1), 349–356 (2006) · Zbl 1134.30043
[19] Ye, S.: Multipliers and cyclic vectors on weighted Bloch spaces. Math. J. Okayama Univ. 48(1), 135–144 (2006) · Zbl 1146.30017
[20] Ye, S.: Remark on cyclic vectors in the Dirichlet space. Expo. Math. 25(4), 341–344 (2007) · Zbl 1142.30022
[21] Ye, S., Lou, Z.: Cyclic vectors and cellular indecomposable operators on $$Q_{p}$$ Q p spaces. Acta Math. Sci. Ser B Engl. Ed. 31(2), 434–440 (2011) · Zbl 1240.30217
[22] Ye, S., Lou, Z.: Cyclic vectors in the weighted $$VMOA$$ V M O A space. Rocky Mt. J. Math. 41(6), 2087–2096 (2011) · Zbl 1245.47003
[23] Ye, S.: A note on cyclic vectors in $$Q_p$$ Q p space. Expo. Math. (2013), http://dx.doi.org/10.1016/j.exmath.2013.06.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.