×

Predator prey optimization for snake-based contour detection. (English) Zbl 1191.68791

Summary: The purpose of this paper is to describe a work that aims to solve the contour detection problem using a planar deformable model and a swarm-based optimization technique. Contour detection is an important task in image processing as it allows depicting boundaries of objects in an image. The proposed approach uses snakes as active contour model and adapts Predator Prey Optimization (PPO) metaheuristic so that to define a new dynamic for evolving snakes in a way to reduce time complexity while providing good quality results.
In the proposed approach, contour detection has been cast as an optimization problem requiring function minimization. PPO has been used to develop a search strategy to handle the optimization process. PPO is a population-based method inspired by the phenomenon of predators attack and preys evasion. It has been proposed as an improvement of Particle Swarm Optimization (PSO) where additional particles are introduced to repel the other particles into the swarm. The introduced dynamic is intended to achieve better exploration of the search space. In the design, a representation scheme has been first defined. Each particle either a predator or a prey is represented as a curve (snake) defined by a set of control points. The idea is then to evolve a set of curves using the dynamic governed by PPO model equations. As a result, the curve that optimizes a defined energy function is identified as the contour of the target object.
Application of the proposed method to a variety of images using a multi agent platform has shown that good quality results have been obtained compared to a PSO-based method.
Nature inspired computing is an emergent paradigm that witnesses a growing interest because it suggests a new philosophy to optimization. This work contributes in showing its suitability to solve problems even it is still at infancy. In another hand, despite the amount of work done in image processing, it is still required to define new methods for image segmentation. This work outlines a new way to deal with this problem through the use of PPO.

MSC:

68U10 Computing methodologies for image processing
68T20 Problem solving in the context of artificial intelligence (heuristics, search strategies, etc.)

Software:

NetLogo
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amini, A., Tehrani, S. and Weymouth, T. (1988), ”Using dynamic programming for minimizing the energy of active contours in the presence of hard constraints”,Proceedings of the International Conference on Computer Vision, Tampa, FL, pp. 95-9. · doi:10.1109/CCV.1988.589976
[2] Arbelaez, P. and Cohen, L. (2004), ”Segmentation d’Images Couleur par Partitions de Voronoi. Revue Traitement du Signal”,Numero Special Image Couleur, Vol. 21 No. 5, pp. 407-21.
[3] DOI: 10.1007/s10851-007-0002-0 · Zbl 1523.94005 · doi:10.1007/s10851-007-0002-0
[4] DOI: 10.1007/BF01385685 · Zbl 0804.68159 · doi:10.1007/BF01385685
[5] DOI: 10.1109/34.244675 · Zbl 05112723 · doi:10.1109/34.244675
[6] Cui, Z.H., Zeng, J.C. and Sun, G.J. (2006), ”A fast particle swarm optimization”,International Journal of Innovative Computing, Information and Control (ICIC), Vol. 6, pp. 1365-80.
[7] DOI: 10.1016/j.cviu.2006.06.010 · Zbl 05182819 · doi:10.1016/j.cviu.2006.06.010
[8] DOI: 10.1007/BF00123164 · doi:10.1007/BF00123164
[9] Freixenet, J., Muñoz, X., Raba, D., Marti, J. and Cufi, X. (2002), ”Yet another survey on image segmentation: region and boundary information integration”,Proceedings of the European Conference on Computer Vision (ECCV ’02), Copenhagen, Denmark, pp. 408-22. · Zbl 1039.68633 · doi:10.1007/3-540-47977-5_27
[10] DOI: 10.1007/3-540-60268-2_351 · doi:10.1007/3-540-60268-2_351
[11] DOI: 10.1007/BF00133570 · doi:10.1007/BF00133570
[12] Kennedy, J. and Eberhart, R.C. (1995), ”Particle swarm optimization”,Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Australia, Vol. 4, pp. 1942-8. · doi:10.1109/ICNN.1995.488968
[13] DOI: 10.1007/3-540-45712-7_60 · Zbl 05880688 · doi:10.1007/3-540-45712-7_60
[14] Kyeong, J.M., Tae Kang, H., Lee, H.S., Yoon, Y.S., Lee, C.M. and Ho Park, J. (2004), ”Active contour model based object contour detection using genetic algorithm with wavelet based image preprocessing”,International Journal of Control, Automation, and Systems, Vol. 2 No. 1, pp. 100-6.
[15] DOI: 10.1109/ICIP.2006.312622 · doi:10.1109/ICIP.2006.312622
[16] Leroy, B., Herlin, I. and Cohen, L. (1996), ”Multi-resolution algorithms for active contour models”,12th International Conference on Analysis and Optimization of Systems, Paris, pp. 58-65. · Zbl 0851.68118 · doi:10.1007/3-540-76076-8_117
[17] Lindeberg, T. (1994), ”Scale-space theory: a basic tool for analysing structures at different scales”,Journal of Applied Statistics, Vol. 21 No. 2, pp. 224-70. · doi:10.1080/757582976
[18] Lodato, C. and Lopes, S. (2006), ”An optical flow based segmentation method for objects extraction”,Transactions on Engineering, Computing and Technology, Vol. 12.
[19] DOI: 10.1007/s10044-005-0015-5 · Zbl 05075217 · doi:10.1007/s10044-005-0015-5
[20] Pugh, J., Zhang, Y. and Martinoli, A. (2005), ”Particle swarm optimization for unsupervised robotic learning”,Swarm Intelligence Symposium, Pasadena, CA, pp. 92-9. · doi:10.1109/SIS.2005.1501607
[21] DOI: 10.1109/ICIP.2001.958615 · doi:10.1109/ICIP.2001.958615
[22] DOI: 10.1002/hyp.6507 · doi:10.1002/hyp.6507
[23] Sébastien, L., Cyril, F., Benjamin, M. and Nicole, V. (2000), ”A fast snake-based method to track football players”,IAPR International Workshop on Machine Vision Applications, Tokyo, pp. 501-4.
[24] DOI: 10.1016/1049-9652(92)90060-B · doi:10.1016/1049-9652(92)90060-B
[25] Shi, Y. and Eberhart, R. (1999), ”Empirical study of particle swarm optimization”,Proceedings of the Congress on Evolutionary Computation, Piscataway, NJ, pp. 1945-50. · doi:10.1109/CEC.1999.785511
[26] Tisue, S. and Wilensky, U. (2004), ”Netlogo: a simple environment for modeling complexity”,International Conference on Complex Systems, Boston, MA, pp. 141-50.
[27] DOI: 10.1016/1049-9660(92)90003-L · Zbl 0797.68176 · doi:10.1016/1049-9660(92)90003-L
[28] Xu, C. and Prince, J.L. (1997), ”Gradient vector flow: a new external force for snakes”,IEEE Conference on Computer Vision and Pattern Recognition. (CVPR’97) Los Alamitos, CA, pp. 66-71.
[29] Xu, C., Yezzi, A. Jr and Prince, J.L. (2000), ”On the relationship between parametric and geometric active contours”,Proceedings of 34th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, pp. 483-9.
[30] Xu, C., Yezzi, A. Jr and Prince, J.L. (2001), ”A summary of geometric level-set analogues for a general class of parametric active contour and surface models”,Proceedings of the IEEE Workshop on Variational and Level Set Methods in Comp. Vis, Vancouver, Canada, pp. 104-11.
[31] DOI: 10.1109/TPAMI.2005.214 · Zbl 05112678 · doi:10.1109/TPAMI.2005.214
[32] DOI: 10.1117/12.323453 · doi:10.1117/12.323453
[33] DOI: 10.1007/BF00133570 · doi:10.1007/BF00133570
[34] Kennedy, J. (1997), ”The particle swarm: social adaptation of knowledge”,IEEE International Conference on Evolutionary Computation, Indianapolis, IN, pp. 303-8. · doi:10.1109/ICEC.1997.592326
[35] DOI: 10.1109/IVS.1995.528264 · doi:10.1109/IVS.1995.528264
[36] DOI: 10.1007/BFb0040810 · doi:10.1007/BFb0040810
[37] Silva, A., Neves, A. and Costa, E. (2003), ”SAPPO: a simple, adaptive, predator prey optimiser”,Proceedings of the 11th Portuguese Conference on Artificial Intelligence, Workshop on Artificial Life and Evolutionary Algorithms (ALEA), EPIA’03, Beja, Portugal, pp. 59-73. · Zbl 1205.68386 · doi:10.1007/978-3-540-24580-3_14
[38] Xiao-Feng, X. and Zhang, W.J. (2004), ”Solving engineering design problems by social cognitive optimization”,Genetic and Evolutionary Computation Conference (GECCO), Seattle, WA, LNCS 3102, pp. 261-2.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.