×

Travelling-wave and asymptotic analysis of a multiphase moving boundary model for engineered tissue growth. (English) Zbl 1497.92119

Summary: We derive a multiphase, moving boundary model to represent the development of tissue in vitro in a porous tissue engineering scaffold. We consider a cell, extra-cellular liquid and a rigid scaffold phase, and adopt Darcy’s law to relate the velocity of the cell and liquid phases to their respective pressures. Cell-cell and cell-scaffold interactions which can drive cellular motion are accounted for by utilising relevant constitutive assumptions for the pressure in the cell phase. We reduce the model to a nonlinear reaction-diffusion equation for the cell phase, coupled to a moving boundary condition for the tissue edge, the diffusivity being dependent on the cell and scaffold volume fractions, cell and liquid viscosities and parameters that relate to cellular motion. Numerical simulations reveal that the reduced model admits three regimes for the evolution of the tissue edge at large time: linear, logarithmic and stationary. Employing travelling-wave and asymptotic analysis, we characterise these regimes in terms of parameters related to cellular production and motion. The results of our investigation allow us to suggest optimal values for the governing parameters, so as to stimulate tissue growth in an engineering scaffold.

MSC:

92C50 Medical applications (general)
92C37 Cell biology
35C07 Traveling wave solutions
35K57 Reaction-diffusion equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aaronson, DG, Density-dependent interaction-diffusion systems. Dynamics and modelling of reactive systems, 161-176 (1980), Cambridge: Academic Press, Cambridge · doi:10.1016/B978-0-12-669550-2.50010-5
[2] Breward, CJW; Byrne, HM; Lewis, CE, The role of cell-cell interactions in a two-phase model for avascular tumour growth, J Math Biol, 45, 125-152 (2002) · Zbl 1012.92017 · doi:10.1007/s002850200149
[3] Browning, AP; Haridas, P.; Simpson, MJ, A Bayesian sequential learning framework to parameterise continuum models of melanoma invasion into human skin, Bull Math Biol, 81, 676-698 (2019) · Zbl 1415.92032 · doi:10.1007/s11538-018-0532-1
[4] Browning, AP; McCue, SW; Binny, RN; Plank, MJ; Shah, ET; Simpson, MJ, Inferring parameters for a lattice-free model of cell migration and proliferation using experimental data, J Theor Biol, 437, 251-260 (2019) · Zbl 1394.92019 · doi:10.1016/j.jtbi.2017.10.032
[5] Byrne, HM; King, JR; McElwain, DLS; Preziosi, L., Two-phase model of solid tumour growth, Appl Math Lett, 16, 567-573 (2003) · Zbl 1040.92015 · doi:10.1016/S0893-9659(03)00038-7
[6] Chan, BP; Leong, KW, Scaffolding in tissue engineering: general approaches and tissue-specific considerations, Eur Spine J, 17, 4, 467-479 (2008) · doi:10.1007/s00586-008-0745-3
[7] Drew, DA, Mathematical modelling of two-phase flow, Annu Rev Fluid Mech, 15, 261-291 (1983) · Zbl 0569.76104 · doi:10.1146/annurev.fl.15.010183.001401
[8] Dzobo K, Thomford NE, Senthebane DA, Shipanga H, Rowe A, Dandara C, Pillay M, Motaung KSCM (2018) Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine. Stem Cells International. Article ID 2495848
[9] Ermentrout, GB; Edelstein-Keshet, L., Cellular automata approaches to biological modeling, J Theor Biol, 160, 97-133 (1993) · doi:10.1006/jtbi.1993.1007
[10] Eyles, J.; King, JR; Styles, V., A tractable mathematical model for tissue growth, Interfaces Free Bound, 21, 4, 463-493 (2019) · Zbl 1442.35557 · doi:10.4171/IFB/428
[11] Fadai, NT, Semi-infinite travelling waves arising in a general reaction-diffusion Stefan model, Nonlinearity, 34, 725-743 (2021) · Zbl 1458.35107 · doi:10.1088/1361-6544/abd07b
[12] Fadai, NT; Simpson, MJ, New travelling wave solutions of the Porous-Fisher model with a moving boundary, J Phys A Math Theor, 53 (2020) · Zbl 1514.35490 · doi:10.1088/1751-8121/ab6d3c
[13] Fadai, NT; Baker, RE; Simpson, MJ, Accurate and efficient discretizations for stochastic models providing near agent-based spatial resolution at low computational cost, J R Soc Interface (2019) · doi:10.1098/rsif.2019.0421
[14] Jensen, G.; Morrill, C.; Huang, Y., 3D tissue engineering, an emerging technique for pharmaceutical research, Acta Pharm Sin B, 8, 5, 756-766 (2018) · doi:10.1016/j.apsb.2018.03.006
[15] King, JR; Franks, SJ, Mathematical analysis of some multi-dimensional tissue-growth models, Eur J Appl Math, 15, 273-295 (2004) · Zbl 1066.35038 · doi:10.1017/S0956792504005480
[16] Klika, V.; Gaffney, EA; Chek, Y.; Brown, CP, An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology, J Mech Behav Biomed Mater, 62, 139-157 (2016) · doi:10.1016/j.jmbbm.2016.04.032
[17] Lehotzky, D.; Zupanc, GKH, Cellular automata modeling of stem-cell-driven development of tissue in the nervous system, Dev Neurobiol, 79, 5, 497-517 (2019) · doi:10.1002/dneu.22686
[18] Lemon, G.; King, J., Travelling-wave behaviour in a multiphase model of a population of cells in an artificial scaffold, J Math Biol, 24, 1, 57-83 (2007) · Zbl 1118.92024 · doi:10.1093/imammb/dql020
[19] Lemon, G.; King, JR, Multiphase modelling of cell behaviour on artificial scaffolds: effects of nutrient depletion and spatially nonuniform porosity, J Math Med Biol, 24, 57-83 (2007) · Zbl 1118.92024 · doi:10.1093/imammb/dql020
[20] Lemon, G.; King, JR; Byrne, HM; Jensen, OE; Shakesheff, KM, Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory, J Math Biol, 52, 571-594 (2006) · Zbl 1110.92016 · doi:10.1007/s00285-005-0363-1
[21] Levitt, M., Could the organ shortage ever be met?, Life Sci Soc Policy, 11, 6 (2015) · doi:10.1186/s40504-015-0023-1
[22] Malda, J.; Woodfield, TBF; Vloodt, FVD; Kooy, FK; Martens, DE; Tramper, J.; Blitterswijk, CAV; Rielse, J., The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs, Biomaterials, 25, 26, 5681-5796 (2004) · doi:10.1016/j.biomaterials.2004.01.028
[23] Murray, JD, Mathematical biology I: an introduction (2002), Berlin: Springer, Berlin · Zbl 1006.92001 · doi:10.1007/b98868
[24] Newman, WI, Some exact solutions to a non-linear diffusion problem in population genetics and combustion, J Theor Biol, 85, 325-334 (1980) · doi:10.1016/0022-5193(80)90024-7
[25] O’Dea, RD; Waters, SL; Byrne, HM, A multiphase model for tissue construct growth in a perfusion bioreactor, Math Med Biol, 27, 95-127 (2010) · Zbl 1190.92008 · doi:10.1093/imammb/dqp003
[26] O’Dea RD, Byrne HM, Waters SL (2012) Continuum modelling of in vitro tissue engineering: a review. In: Geris L (eds) Computational modeling in tissue engineering. Studies in mechanobiology, tissue engineering and biomaterials, vol 10. Springer, Berlin, Heidelberg
[27] Petite, H.; Viateau, V.; Bensaïd, W.; Meunier, A.; de Pollak, C.; Bourguignon, M.; Oudina, K.; Sedel, L.; Guillemin, G., Tissue-engineered bone regeneration, Nat Biotechnol, 18, 9, 959-963 (2000) · doi:10.1038/79449
[28] Preziosi, L.; Tosin, A., Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications, J Math Biol, 58, 625-656 (2003) · Zbl 1311.92029 · doi:10.1007/s00285-008-0218-7
[29] Sato, T.; Tao, H.; Araki, M.; Ueda, H.; Omori, K.; Nakamura, T., Replacement of the left main bronchus with a tissue-engineered prosthesis in a canine model, Ann Thorac Surg, 86, 422-428 (2008) · doi:10.1016/j.athoracsur.2008.04.015
[30] Schimming, R.; Schmelzeisen, R., Tissue-engineered bone for maxillary sinus augmentation, J Oral Maxillofac Surg, 62, 6, 724-729 (2010) · doi:10.1016/j.joms.2004.01.009
[31] Sogutlu, S.; Koc, B., Stochastic modeling of tissue engineering scaffolds with varying porosity levels, Comput Aided Des Appl, 4, 5, 661-670 (2013) · doi:10.1080/16864360.2007.10738500
[32] Vitvitsky, AA, Cellular automata with dynamic structure to simulate the growth of biological tissues, Numer Anal Appl, 7, 263-273 (2014) · Zbl 1340.92011 · doi:10.1134/S1995423914040016
[33] Youssef, BB, A parallel cellular automata algorithm for the deterministic simulation of 3-D multicellular tissue growth, Cluster Comput, 18, 1561-1579 (2015) · doi:10.1007/s10586-015-0455-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.