×

Singular stress fields in masonry structures: Derand was right. (English) Zbl 1339.74010

Summary: The idea of a no-tension (NT) material underlies the design of masonry structures since antiquity. Based on the NT model, the safety of the structure is a problem of geometry rather than of strength materials, in the same spirit of the “rules of proportion” of the medieval building tradition. The use of singular stress fields for equilibrium problems of NT materials in \(2d\), has been recently proposed by M. Lucchesi et al. [“On the choice of function spaces in the limit analysis for masonry bodies”, J. Mech. Mater. Struct. 7, No. 8–9, 795–836 (2012; doi:10.2140/jomms.2012.7.795)] to produce statically admissible stress fields; here we introduce a simple way to construct singular stresses, based on the Airy’s stress formulation. We interpret the singular part of such stress fields as axial contact forces acting on ideal \(1d\) structures arising inside the body, in the same spirit of Strut and Tie methods. A number of simple problems of equilibrium concerning typical walls, arches and portals, is solved in terms of stress fields having regular and singular parts, by adopting the direct and the stress function formulation. The validity of the rules of proportion described by F. Derand [L’architecture des voutes. Paris: Sebastien Cramoisy (1643), http://architectura.cesr.univ-tours.fr/Traite/Images/Pdf/B250566101_11598.pdf] is also verified.

MSC:

74G70 Stress concentrations, singularities in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ambrosio L, Fusco N, Pallara D (2000) Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York · Zbl 0957.49001
[2] Angelillo M (1993) Constitutive relations for no-tension materials. Meccanica 28(2):195-202 · Zbl 0783.73006 · doi:10.1007/BF00989121
[3] Angelillo M, Babilio E, Fortunato A (2006) Folding of thin walled tubes as a free gradient discontinuity problem. J Elast 82:243-271 · Zbl 1094.74021 · doi:10.1007/s10659-005-9033-1
[4] Angelillo M, Babilio E, Fortunato A (2012) Numerical solutions for crack growth based on the variational theory of fracture. Comput Mech 50:285-301 · Zbl 1398.74290 · doi:10.1007/s00466-012-0755-1
[5] Angelillo M, Babilio E, Fortunato A (2013) Singular stress fields for masonry-like vaults. Contin Mech Thermodyn 25:423-401 · Zbl 1343.74028 · doi:10.1007/s00161-012-0270-9
[6] Angelillo M, Cardamone L, Fortunato A (2010) A numerical model for masonry-like structures. J Mech Mater Struct 5:583-615 · doi:10.2140/jomms.2010.5.583
[7] Angelillo M, Fortunato A (2002) Equilibrium of masonry vaults. In: Fremond, Maceri (eds) Lecture notes in applied and computational mechanics, vol 16. Springer, pp 105-111 · Zbl 1056.74541
[8] Angelillo M, Rosso F (1995) On statically admissible stress fields for a plane masonry-like structure. Q Appl Math 53(4):731-751 · Zbl 0840.73017
[9] Baratta A, Toscano R (1982) Stati tensionali in pannelli di materiale non resistente a trazione. In: Atti del VI Congresso Nazionale AIMETA, Genova · Zbl 0911.73022
[10] Benvenuto E (1991) An introduction on the history of structural mechanics part II: vaulted structures and elastic systems. Springer, Berlin · Zbl 0766.73006
[11] Castellano G (1988) Un modello cinematico per i materiali non resistente a trazione. In: Cinquantenario della Facolta di Architettura di Napoli: Franco Jossa e la sua opera, pp 241-256
[12] Como M (2010) Statica delle costruzioni storiche in muratura. Archi, volte, cupole, architetture monumentali, edifici sotto carichi verticali e sotto sisma. Aracne
[13] Como M, Grimaldi A (1985) A unilateral model for the limit analysis of masonry walls. In: Del Piero G, Maceri F (eds) Unilateral problems in structural analysis (CISM Courses and Lectures), vol 288. Springer, pp 25-45
[14] Conti S, De Simone A, Müller S (2005) Self-similar folding patterns and energy scaling in compressed elastic sheets. Comput Methods Appl Mech Eng 194:2534-2549 · Zbl 1082.74030 · doi:10.1016/j.cma.2004.07.044
[15] De Faveri S, Freddi L, Paroni R (2013) No-tension bodies: a reinforcement problem. Eur J Mech A Solids 39:163-169 · Zbl 1348.74038 · doi:10.1016/j.euromechsol.2012.11.006
[16] Del Piero G (1989) Constitutive equation and compatibility of the external loads for linear elastic masonry-like materials. Meccanica 24:150-162 · Zbl 0679.73002
[17] Del Piero G (1998) Limit analysis and no-tension materials. Int J Plast 14(1-3):259-271 · Zbl 0911.73022 · doi:10.1016/S0749-6419(97)00055-7
[18] Derand F (1643) L’architecture des voutes, Cramoisy · Zbl 1246.74008
[19] Di Pasquale S (1984) Questioni concernenti la meccanica dei mezzi non reagenti a trazione. Atti VII Congresso Nazionale AIMETA, Trieste · Zbl 0783.73006
[20] Fortunato A (2010) Elastic solutions for masonry-like panels. J Elast 98:87-110 · Zbl 1246.74008 · doi:10.1007/s10659-009-9219-z
[21] Fraternali F, Angelillo M, Fortunato A (2002) The lumped stress method and the discrete-continuum approximation. Int J Solids Struct 39:6211-6240 · Zbl 1032.74703 · doi:10.1016/S0020-7683(02)00472-9
[22] García S (1681) Compendio de architettura y simetría de los templos. Biblioteca Nacional de Madrid, Ms 8884 · Zbl 0485.73076
[23] Giaquinta M, Giusti E (1985) Researches on the equilibrium of masonry structures. Arch Ration Mech Anal 88:359-392 · Zbl 0656.73012 · doi:10.1007/BF00250872
[24] Gioia G, DeSimone A, Ortiz M, Cuitiño A (2002) Folding energetics in thin-film diaphragms. Proc R Soc A 458(2021):1223-1229 · Zbl 1065.74046 · doi:10.1098/rspa.2001.0921
[25] Gurtin EM (1972) The linear theory of elasticity. In: Handbuch der Physik, band VIa/2. Springer, Berlin · Zbl 0656.73012
[26] Heyman J (1966) The stone skeleton. Int J Solids Struct 2:249-279 · doi:10.1016/0020-7683(66)90018-7
[27] Huerta S (2006) Galileo was wrong: the geometrical design of arches. Nexus Netw J 8(2):25-52 · Zbl 1116.01001 · doi:10.1007/s00004-006-0016-8
[28] Lucchesi M, Padovani C, Pasquinelli G, Zani N (2008) Masonry constructions: mechanical models and numerical applications. In: Lecture notes in applied and computational mechanics, vol 39. Springer · Zbl 1157.74001
[29] Lucchesi M, Silhavi M, Zani N (2012) On the choice of functions spaces in the limit analysis for masonry bodies. J Mech Mater Struct 7(8-9):795-836 · doi:10.2140/jomms.2012.7.795
[30] Lucchesi M, Silhavy M, Zani N (2008) Integration of measures and admissible stress fields for masonry bodies. J Mech Mater Struct 3(4):675-696 · doi:10.2140/jomms.2008.3.675
[31] Romano G, Romano M (1979) Sulla soluzione di problemi strutturali in presenza di legami costitutivi unilaterali. Rend Accad Naz Lincei 67:104-113 · Zbl 0485.73076
[32] Romano G, Sacco E (1984) Sul calcolo di strutture non resistenti a trazione. In: Atti del VII Congresso Nazionale AIMETA, Trieste. · Zbl 1065.74046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.