×

Bracing rhombic structure by one-dimensional tensegrities. (English) Zbl 1394.70007

Summary: Certain behaviors of some material are characterized by the periodic bar and joint elements. We present a kinematic, geometric and graph theoretic connected model that describes the stability, rigidity property of these rhombic tiling materials in two dimensions. Cables, struts or rods are placed as bracing elements between opposite pairs of diagonal joints, to prevent the rhombic tiling from the rotation of the bars around their common joint. We characterize the rigidity of the finite parts of the rhombic bracing structure in the plane. The results of this paper are based on the theorem of the rigidity of one-dimensional tensegrity framework from Recski and Shai. We have applied our results to describe some auxetic type structures that were mentioned earlier in the scientific literature. We also introduce the model as a possible candidate for the mechanical information processing system in a repetitive bar and joint structure.

MSC:

70B15 Kinematics of mechanisms and robots
52C25 Rigidity and flexibility of structures (aspects of discrete geometry)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Babaee S, Shim J, Weaver JC, Chen ER, Patel N, Bertoldi K (2013) 3D soft metamaterials with negative poisson’s ratio. Adv Mater 25(36):5044-5049 · doi:10.1002/adma.201301986
[2] Baglivo JA, Graver JE (1983) Incidence and symmetry in design and architecture. Cambridge University Press, Cambridge
[3] Bölcskei A, Molnár E (1998) How to design nice tilings? KoG Sci Prof Inf J Croat Soc Constr Geom Comput Graph 3:21-28 · Zbl 0941.52017
[4] Bolker ED, Crapo H (1979) Bracing rectangular frameworks. I. SIAM J Appl Math 36(3):473-490 · Zbl 0416.70009 · doi:10.1137/0136036
[5] Borcea CS, Streinu I (2010) Periodic frameworks and flexibility. Proc R Soc A 466:2633-2649 · Zbl 1211.82053 · doi:10.1098/rspa.2009.0676
[6] Böröczky KJ, Réti T, Wintsche G (2006) On the combinatorial characterization of quasichrystals. J Geom Phys 57:39-52 · Zbl 1167.82367 · doi:10.1016/j.geomphys.2006.02.001
[7] Campos A, Guenther R, Martins D (2009) Differential kinematics of parallel manipulators using Assur virtual chains. Proc Inst Mech Eng C J Mech 223(7):1697-1711 · doi:10.1243/09544062JMES1156
[8] Frettlöh D, Harriss E (2013) Parallelogram tilings, worms and finite orientations. Discret Comput Geom 4:9531-9539 · Zbl 1279.52020
[9] Friedman N, Ibrahimbegovic A (2013) Overview of highly flexible, deployable lattice structures used in architecture and civil engineering undergoing large displacements. YBL J Built Env 1:85-103 · doi:10.2478/jbe-2013-0006
[10] Frittmann J, Lángi ZS (2015) Decompositions of a polygon into centrally symmetric pieces. arXiv:1504.05418 · Zbl 1354.52023
[11] Gáspár Zs, Radics N, Recski A (1998) Square grids with long diagonals. Optim Methods Softw 10:217-231 · Zbl 0942.05013 · doi:10.1080/10556789808805712
[12] Gaspar Zs, Radics N, Recski A (1999) Rigidity of square grids with holes. Comput Assist Mech Eng Sci 6:329-335 · Zbl 1043.74516
[13] Gatt R, Mizzi L, Azzopardi JI, Azzopardi KM, Attard D, Casha A, Briffa J, Grima JN (2013) Hierarchical auxetic mechanical metamaterials. Nature 25(36):5044
[14] Grima JN, Evans KE (2000) Auxetic behavior from rotating squares. J Mater Sci Lett 19(17):1563-1565 · doi:10.1023/A:1006781224002
[15] Guest SD, Hutchinson JW (2003) On the determinacy of repetitive structures. J Mech Phys Solids 51:383-391 · Zbl 1100.74593 · doi:10.1016/S0022-5096(02)00107-2
[16] Horváth AG (1997) Dissections of a centrally symmetric hexagon, Bolyai Soc. Math Stud 6:327-334 · Zbl 0886.52007
[17] Jordán T, Domokos G, Tóth K (2013) Geometric Sensitivity of Rigid Graphs. SIAM J Discret Math 27(4):1710-1726 · Zbl 1287.52016 · doi:10.1137/110860872
[18] Jordán T, Recski A, Szabadka Z (2009) Rigid tensegrity labelings of graphs. Eur J Comb 30(8):1887-1895 · Zbl 1226.05216 · doi:10.1016/j.ejc.2008.12.014
[19] Kapko V, Treacy MJ, Thorpe MF, Guest SD (2009) On the collapse of locally isostatic networks. Proc R Soc A 465:3517-3530 · Zbl 1186.74069 · doi:10.1098/rspa.2009.0307
[20] Körner C, Liebold-Ribeiro Y (2015) A systematic approach to identify cellular auxetic materials. Smart Mater Struct 24(025013):10
[21] Lovász L, Vesztergombi K (2002) Geometric representations of graphs. In: Halász G, Lovász L, Simonovits M, T. Sós V (ed) Paul Erdős and his Mathematics, Bolyai Soc. Math. Stud, János Bolyai Math. Soc., Budapest 11:471-498 · Zbl 1031.05090
[22] Lu Guang Hong; Zhang Lei (2012) Connecting microscopic structure and macroscopic mechanical properties of structural materials from first-principles. Sci China Phys Mech Astron 55(12):2305-2315 · doi:10.1007/s11433-012-4951-y
[23] Mitschke H, Schwerdtfeger J, Schury F, Stingl M, Körner C, Singer RF, Robins V, Mecke K, Schröder-Turk GE (2011) Finding auxetic frameworks in periodic tessellations. Adv Mater 22-23(23):2669-2674 · doi:10.1002/adma.201100268
[24] Nagy G (2006) Tessellation-like rod-joint frameworks. Ann Univ 49:3-14 · Zbl 1164.74309
[25] Nagy G, Katona J (2010) Connectivity for rigidity. In: Studies of the University of Zilina Mathematical Series 24 (1, 6):59-64 · Zbl 1234.52015
[26] Nagy Gy (2001) Rigidity of an annex building. Struct Multidiscip Optim 22(1):83-86 · doi:10.1007/s001580100126
[27] Nagy Gy (1994) Diagonal bracing of special cube grids. Acta Tech Acad Sci Hung 106(3-4):256-273 · Zbl 0872.52010
[28] Owen JC, Power S (2010) Frameworks symmetry and rigidity. Int J Comput Geom Appl 20(6):723-750 · Zbl 1222.52022 · doi:10.1142/S0218195910003505
[29] Power SC (2014) Crystal frameworks, symmetry and affinely periodic flexes, New York. J Math 20:1-29 · Zbl 1295.52027
[30] Radics N, Recski A (2002) Applications of combinatorics to statics—rigidity of grids. Discret Appl Math 123:473-485 · Zbl 1034.70002 · doi:10.1016/S0166-218X(01)00350-X
[31] Recski A (1989) Matroid theory and its applications in electric network theory and in statics. Akadémiai Kiadó/Springer, Budapest/Berlin · Zbl 0729.05012 · doi:10.1007/978-3-662-22143-3
[32] Recski A, Shai O (2010) Tensegrity frameworks in the one-dimensional space. Eur J Comb 31(4):1072-1079 · Zbl 1191.05034 · doi:10.1016/j.ejc.2009.09.008
[33] Reti T, Böröczky KJ (2004) Topological characterization of cellular structures. Acta Polytech Hung 1:59-85
[34] Tanaka H (2013) Bi-stiffness property of motion structures transformed into square cells. Proc R Soc A 469(2156):2013006 · doi:10.1098/rspa.2013.0063
[35] Tanaka H, Shibutani Y, Izumi S, Sakai S (2012) Planar mobility modes of eight-barjointed structures with a single degree of freedom. Int J Solids Struct 49:1712-1722 · doi:10.1016/j.ijsolstr.2012.03.008
[36] You Z, Pellegrino S (1997) Foldable bar structures. Int J Solids Struct 34:1825-1847 · Zbl 0944.74586 · doi:10.1016/S0020-7683(96)00125-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.