×

Equally weighted cardinality constrained portfolio selection via factor models. (English) Zbl 1460.91251

The portfolio selection problem deals with selecting a collection of financial assets and their proportions, according to the investor’s risk preference, with the aim of obtaining the maximum expected return. The selection of assets allocated to the portfolio can be managed using different approaches: minimum risk allocation, equal weighting, risk parity, Sharpe ratio, and many others. The simplest model in portfolio optimization requires the equally weighted constraint, i.e, the weights of the assets are identical. Moreover, the previous papers devoted to this topic deal with the classical Markowitz model only; these papers do not integrate the cardinality constraint in factor models. On the contrary, the present paper focuses on the new model that combines the three features, namely; factor model, cardinality constraint and equally weighted constraint. This new model can obtain high quality solutions in very little computational time; moreover, it can be helpful to practitioners as a first step in order to evaluate what best assets to consider, and using this information in a later analysis where more elaborate techniques are used. Also, the paper presents some theoretical results on this new \(0-1\) pure binary quadratic optimization model.

MSC:

91G10 Portfolio theory
90C20 Quadratic programming

Software:

OR-Library
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Beasley, JE; Meade, N.; Chang, TJ, An evolutionary heuristic for the index tracking problem, Eur. J. Oper. Res., 148, 621-643 (2003) · Zbl 1037.90038 · doi:10.1016/S0377-2217(02)00425-3
[2] Beasley, JE, OR-Library: distributing test problems by electronic mail, J. Oper. Res. Soc., 41, 1069-1072 (1990) · doi:10.1057/jors.1990.166
[3] Bertsimas, D.; Shioda, R., Algorithm for cardinality-constrained quadratic optimization, Comput. Optim. Appl., 43, 1-22 (2009) · Zbl 1178.90262 · doi:10.1007/s10589-007-9126-9
[4] Bianchi, SW; Goldberg, LR; Rosenberg, A., The impact of estimation error on latent factor model forecast of portfolio risk, J Portf Manag Spec QES Issue, 43, 147-156 (2017) · doi:10.3905/jpm.2017.43.5.147
[5] Bienstock, D., Computational study of a family of mixed-integer quadratic programming problems, Math. Program., 74, 121-140 (1996) · Zbl 0855.90090
[6] Burak Paç, A.; Pınar, MÇ, On robust portfolio and naïve diversification: mixing ambiguous and unambiguous assets, Ann. Oper. Res., 266, 223-253 (2018) · Zbl 1417.91475 · doi:10.1007/s10479-017-2619-8
[7] Burkard, RE; Klinz, B.; Rudolf, R., Perspectives of Monge properties in optimization, Discrete Appl. Math., 70, 95-161 (1996) · Zbl 0856.90091 · doi:10.1016/0166-218X(95)00103-X
[8] Canakgoz, NA; Beasley, JE, Mixed-integer programming approaches for index tracking and enhanced indexation, Eur. J. Oper. Res., 196, 384-399 (2009) · Zbl 1159.91464 · doi:10.1016/j.ejor.2008.03.015
[9] Carathéodory, C., Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann., 64, 95-115 (1907) · JFM 38.0448.01 · doi:10.1007/BF01449883
[10] Castro, F.; Gago, J.; Hartillo, I.; Puerto, J.; Ucha, JM, An algebraic approach to integer portfolio problems, Eur. J. Oper. Res., 210, 647-659 (2011) · Zbl 1213.91136 · doi:10.1016/j.ejor.2010.11.007
[11] Cormen, TH; Leisernon, CE; Rivest, R.; Stein, S., Introduction to Algorithms (2001), Cambridge: The MIT Press, Cambridge · Zbl 1047.68161
[12] Cesarone, F.; Scozzari, A.; Tardella, F., A new method for mean-variance portfolio optimization with cardinality constraints, Ann. Oper. Res., 8, 213-234 (2013) · Zbl 1269.91069 · doi:10.1007/s10479-012-1165-7
[13] Chang, TJ; Meade, N.; Beasley, JE; Sharaiha, YM, Heuristics for cardinality constrained portfolio optimisation, Comput. Oper. Res., 27, 1271-1302 (2000) · Zbl 1032.91074 · doi:10.1016/S0305-0548(99)00074-X
[14] Deguest, R., Martellini, L., Meucci, A.L: Risk parity and beyond—from asset allocation to risk allocation decisions. EDHEC-Risk Institute, Nice, France. Working paper (2013)
[15] DeMiguel, V.; Garlappi, L.; Uppal, R., Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy?, Rev. Financ. Stud., 18, 1219-1251 (2009)
[16] DeMiguel, V.; Nogales, FJ, Portfolio selection with robust estimation, Oper. Res., 59, 560-577 (2009) · Zbl 1233.91240 · doi:10.1287/opre.1080.0566
[17] Driessen, J.; Melenberg, B.; Nijman, T., Common factors in international bond returns, J. Int. Money Finance, 22, 629-656 (2003) · doi:10.1016/S0261-5606(03)00046-9
[18] Gao, J.; Li, D., Optimal cardinality constrained portfolio selection, Oper. Res., 61, 745-761 (2013) · Zbl 1273.91423 · doi:10.1287/opre.2013.1170
[19] Gao, J.; Li, D., A polynomial case of the cardinality.constrained quadratic optimization problem, J. Glob. Optim., 56, 1441-1455 (2013) · Zbl 1296.90085 · doi:10.1007/s10898-012-9853-z
[20] Garey, MR; Johnson, DS, Computer and Intractability, a Guide to the Theory of NP-Completeness (1979), San Francisco: W.H. Freeman Co, San Francisco · Zbl 0411.68039
[21] Haley, MR, Shorfall minimization and the Naive (1/N) portfolio: an out-of-sample comparison, Appl. Econ. Lett., 23, 926-929 (2016) · doi:10.1080/13504851.2015.1119788
[22] Kellerer, H.; Mansini, R.; Speranza, MG, Slecting portfolios with fixed cost and minimum transactions lots, Ann. Oper. Res., 99, 287-304 (2000) · Zbl 1059.91042 · doi:10.1023/A:1019279918596
[23] Lassance, N., DeMiguel, V., Vrins, F.: Optimal portfolio diversification via independent component analysis. Available at SSRN: 10.2139/ssrn.3285156 (2019)
[24] Li, D.; Sun, X.; Wang, J., Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection, Math. Finance, 16, 83-101 (2006) · Zbl 1128.91028 · doi:10.1111/j.1467-9965.2006.00262.x
[25] Mansini, R.; Speranza, G., An exact approach for portfolio selection with transaction cost and rounds, IIE Trans., 37, 919-929 (2005) · doi:10.1080/07408170591007821
[26] Markowitz, HM, Portfolio Selection, J. Finance, 7, 77-91 (1952)
[27] Meucci, A., Managing diversification, Risk, 22, 74-79 (2009)
[28] Meucci, A.; Santangelo, A.; Deguest, R., Risk budgeting and diversification based on optimized uncorrelated factors, Risk, 11, 70-75 (2015)
[29] Park, JK, A special case of the n-vertex traveling salesman problem that can be solved in O(n) time, Inf. Process. Lett., 40, 247-254 (1991) · Zbl 0743.68079 · doi:10.1016/0020-0190(91)90118-2
[30] Peng, Y.; Albuquerque, PHM; Nascimento, IF do; Machado, JVF, Between nonlinearities, complexity, and noises: an application on portfolio selection using kernel principal component analysis, Entropy, 21, 376 (2019) · doi:10.3390/e21040376
[31] Pferschy, U.; Rudolf, R.; Woeginger, G., Monge matrices make maximization manageable, Oper. Res. Lett., 16, 245-254 (1994) · Zbl 0822.90112 · doi:10.1016/0167-6377(94)90037-X
[32] Sharpe, WF, A simplified model for portfolio analysis, Manage. Sci., 9, 277-293 (1963) · doi:10.1287/mnsc.9.2.277
[33] Sharpe, WF, Capital asset prices: a theory of market equilibrium under condition of risk, J. Finance, 19, 425-442 (1964)
[34] Shaw, DX; Liu, S.; Kopman, L., Lagrangian relaxation procedure for cardinality—constrained portfolio optimization, Optim. Methods Softw., 23, 411-420 (2008) · Zbl 1162.90531 · doi:10.1080/10556780701722542
[35] Woeginger, GJ, Computational problems without computation, Nieuw Archief voor Wiskunde, 2, 140-147 (2003) · Zbl 1151.90621
[36] Woodside-Oriakhi, M.; Lucas, C.; Beasley, JE, Heuristic algorithms for the cardinality constrained efficient frontier, Eur. J. Oper. Res., 213, 538-550 (2011) · Zbl 1218.91151 · doi:10.1016/j.ejor.2011.03.030
[37] Zakamulin, V., Superiority of optimized portfolios to naive diversification: Fact or fiction?, Finance Res. Lett., 22, 122-128 (2017) · doi:10.1016/j.frl.2016.12.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.