Anderson, Greg W.; Zeitouni, Ofer A CLT for a band matrix model. (English) Zbl 1084.60014 Probab. Theory Relat. Fields 134, No. 2, 283-338 (2006). Summary: A law of large numbers and a central limit theorem are derived for linear statistics of random symmetric matrices whose on-or-above diagonal entries are independent, but neither necessarily identically distributed, nor necessarily all of the same variance. The derivation is based on systematic combinatorial enumeration, study of generating functions, and concentration inequalities of the Poincaré type. Special cases treated, with an explicit evaluation of limiting variances, are generalized Wigner and Wishart matrices. Cited in 91 Documents MSC: 60F05 Central limit and other weak theorems PDFBibTeX XMLCite \textit{G. W. Anderson} and \textit{O. Zeitouni}, Probab. Theory Relat. Fields 134, No. 2, 283--338 (2006; Zbl 1084.60014) Full Text: DOI arXiv References: [1] Bai, Statist. Sinica, 9, 611 (1999) · Zbl 0949.60077 [2] Bai, Z.D., Yao, J.-F.: On the convergence of the spectral empirical process of Wigner matrices. Preprint, 2003 [3] Bai, Annals Probab., 32, 553 (2004) · Zbl 1063.60022 [4] Bobkov, V. Syktyvkar Univ., 3, 15 (1999) · Zbl 0981.60008 [5] Borovkov, Theor. Prob. Appl., 28, 209 (1983) · Zbl 0511.60016 [6] Cabanal-Duvillard, Ann. Inst. H. Poincaré - Probab. Statist., 37, 373 (2001) · Zbl 1016.15020 [7] Chatterjee, S., Bose, A.: A new method of bounding rate of convergence of empirical spectral distributions. Preprint, 2004. Available at www-stat.stanford.edu/∼ souravc/rateofconv.pdf · Zbl 1063.60024 [8] Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. New York University-Courant Institute of Mathematical Sciences, AMS, 2000 · Zbl 0997.47033 [9] Füredi, Combinatorica, 1, 233 (1981) · Zbl 0494.15010 [10] Girko, V.L.: Theory of Random Determinants. Kluwer, 1990 [11] Guionnet, Ann. Inst. H. Poincaré Probab. Statist, 38, 341 (2002) · Zbl 0995.60028 [12] Guionnet, Elec. Commun. Probab., 5, 119 (2000) · Zbl 0969.15010 [13] Hiai, F., Petz, D.: The Semicircle Law. Free Random Variables and Entropy. AMS, 2000 · Zbl 0955.46037 [14] Janson, S.: Gaussian Hilbert Spaces. Cambridge University Press, 1997 · Zbl 0887.60009 [15] Jonsson, J. Mult. Anal., 12, 1 (1982) · Zbl 0491.62021 [16] Johansson, Duke J. Math., 91, 151 (1998) · Zbl 1039.82504 · doi:10.1215/S0012-7094-98-09108-6 [17] Khorunzhy, J. Math. Phys., 37, 5033 (1996) · Zbl 0866.15014 · doi:10.1063/1.531589 [18] Ledoux, M.: The Concentration of Measure Phenomenon. American Mathematical Society, Providence, 2001 · Zbl 0995.60002 [19] Mehta, M.L.: Random Matrices. 2nd ed. Academic Press, 1991 · Zbl 0780.60014 [20] Mingo, J.A., Speicher, R.: Second Order Freeness and Fluctuations of Random Matrices: I. Gaussian and Wishart matrices and Cyclic Fock spaces. Preprint, available at arXiv:math.OA/0405191, 2004 · Zbl 1100.46040 [21] Molchanov, Theoret. Math. Phys., 90, 108 (1992) · Zbl 0794.15011 [22] Nica, I. Characterizations of freeness. Int. Math. Res. Notices, 29, 1509 (2002) · Zbl 1007.46052 [23] Pastur, In: Lecture Notes in Mathematics, 1801, 135 (2003) · Zbl 1175.15029 [24] Pastur, Math. USSR-Sbornik, 1, 457 (1967) · Zbl 0162.22501 [25] Shlyakhtenko, Int. Math. Res. Notices, 20, 1013 (1996) · Zbl 0872.15018 [26] Sinai, Bol. Soc. Brasil. Mat. (N.S.), 29, 1 (1998) · Zbl 0912.15027 [27] Stanley, R.: Enumerative Combinatorics, vol. II. Cambridge University press, 1999 · Zbl 0928.05001 [28] Wigner, Ann. Math., 62, 548 (1955) · Zbl 0067.08403 · doi:10.2307/1970079 [29] Wishart, Biometrika, 20, 32 (1928) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.