Bobkov, S. G.; Götze, F. Concentration of empirical distribution functions with applications to non-i.i.d. models. (English) Zbl 1207.62106 Bernoulli 16, No. 4, 1385-1414 (2010). Summary: The concentration of empirical measures is studied for dependent data, whose joint distribution satisfies Poincaré-type or logarithmic Sobolev inequalities. The general concentration results are then applied to spectral empirical distribution functions associated with high-dimensional random matrices. Cited in 4 Documents MSC: 62G30 Order statistics; empirical distribution functions 62H10 Multivariate distribution of statistics 60E15 Inequalities; stochastic orderings 62E17 Approximations to statistical distributions (nonasymptotic) 60F10 Large deviations 15B52 Random matrices (algebraic aspects) Keywords:empirical measures; logarithmic Sobolev inequalities; Poincaré-type inequalities; random matrices; spectral distributions PDF BibTeX XML Cite \textit{S. G. Bobkov} and \textit{F. Götze}, Bernoulli 16, No. 4, 1385--1414 (2010; Zbl 1207.62106) Full Text: DOI arXiv OpenURL References: [1] Ball, K. (1988). Logarithmically concave functions and sections of convex sets in R n . Studia Math. 88 69-84. · Zbl 0642.52011 [2] Bhatria, R. (1997). Matrix Analysis. Graduate Texts in Mathematics 169 . New York: Springer. [3] Bobkov, S.G. (1999). Remarks on the Gromov-Milman inequality. Vestn. Syktyvkar. Univ. Ser. 1 Mat. Mekh. Inform. 3 15-22. · Zbl 0981.60008 [4] Bobkov, S.G. (1999). Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27 1903-1921. · Zbl 0964.60013 [5] Bobkov, S.G., Gentil, I. and Ledoux, M. (2001). Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pures Appl. 88 669-696. · Zbl 1038.35020 [6] Bobkov, S.G. and Götze, F. (1999). Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 1 1-28. · Zbl 0924.46027 [7] Bobkov, S.G. and Götze, F. (2008). Hardy-type inequalities via Riccati and Sturm-Liouville equations. In Sobolev Spaces in Mathematics, I (V. Maz’ya, ed.). Intern. Math. Series 8 69-86. New York: Springer. · Zbl 1173.26319 [8] Bobkov, S.G., Götze, F. and Tikhomirov, A.N. (2010). On concentration of empirical measures and convergence to the semi-circle law. Bielefeld University. Preprint. J. Theor. Probab. · Zbl 1247.60010 [9] Bobkov, S.G. and Houdré, C. (1997). Isoperimetric constants for product probability measures. Ann. Probab. 25 184-205. · Zbl 0878.60013 [10] Bobkov, S.G. and Ledoux, M. (1997). Poincare’s inequalities and Talagrand’s concentration phenomenon for the exponential distribution. Probab. Theory Related Fields 107 383-400. · Zbl 0878.60014 [11] Bobkov, S.G. and Ledoux, M. (2009). Weighted Poincaré-type inequalities for Cauchy and other convex measures. Ann. Probab. 37 403-427. · Zbl 1178.46041 [12] Borovkov, A.A. and Utev, S.A. (1983). On an inequality and a characterization of the normal distribution connected with it. Probab. Theory Appl. 28 209-218. · Zbl 0511.60016 [13] Cambanis, S., Simons, G. and Stout, W. (1976). Inequalities for Ek ( X , Y ) when the marginals are fixed. Z. Wahrsch. Verw. Gebiete 36 285-294. · Zbl 0325.60002 [14] Chatterjee, S. and Bose, A. (2004). A new method for bounding rates of convergence of empirical spectral distributions. J. Theoret. Probab. 17 1003-1019. · Zbl 1063.60024 [15] Davidson, K.R. and Szarek, S.J. (2001). Local operator theory, random matrices and Banach spaces. In Handbook of the Geometry of Banach Spaces I 317-366. Amsterdam: North-Holland. · Zbl 1067.46008 [16] Dudley, R.M. (1989). Real Analysis and Probability . Pacific Grove, CA: Wadsworth & Brooks/Cole Advanced Books & Software. · Zbl 0686.60001 [17] Dvoretzky, A., Kiefer, J. and Wolfowitz, J. (1956). Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Statist. 27 642-669. · Zbl 0073.14603 [18] Erdös, L., Schlein, B. and Yau, H.-T. (2009). Local semicircle law and complete delocalization for Wigner random matrices. Comm. Math. Phys. 287 641-655. · Zbl 1186.60005 [19] Evans, L.C. (1997). Partial Differential Equations. Graduate Studies in Math. 19 . Providence, RI: Amer. Math. Soc. · Zbl 0980.65501 [20] Götze, F. and Tikhomirov, A.N. (2003). Rate of convergence to the semi-circular law. Probab. Theory Related Fields 127 228-276. · Zbl 1031.60019 [21] Götze, F. and Tikhomirov, A.N. (2005). The rate of convergence for spectra of GUE and LUE matrix ensembles. Cent. Eur. J. Math. 3 666-704 (electronic). · Zbl 1108.60014 [22] Götze, F., Tikhomirov, A.N. and Timushev, D.A. (2007). Rate of convergence to the semi-circle law for the deformed Gaussian unitary ensemble. Cent. Eur. J. Math. 5 305-334 (electronic). · Zbl 1155.15027 [23] Gromov, M. and Milman, V.D. (1983). A topological application of the isoperimetric inequality. Amer. J. Math. 105 843-854. · Zbl 0522.53039 [24] Guionnet, A. and Zeitouni, O. (2000). Concentration of the spectral measure for large matrices. Electron. Comm. Probab. 5 119-136. · Zbl 0969.15010 [25] Gustavsson, J. (2005). Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. H. Poincaré Probab. Statist. 41 151-178. · Zbl 1073.60020 [26] Hensley, D. (1980). Slicing convex bodies - bounds for slice area in terms of the body’s covariance. Proc. Amer. Math. Soc. 79 619-625. · Zbl 0439.52008 [27] Kac, I.S. and Krein, M.G. (1958). Criteria for the discreteness of the spectrum of a singular string. Izv. Vysš. Učebn. Zaved. Matematika 2 136-153. [28] Kim, T.Y. (1999). On tail probabilities of Kolmogorov-Smirnov statistics based on uniform mixing processes. Statist. Probab. Lett. 43 217-223. · Zbl 0929.62010 [29] Ledoux, M. (1999). Concentration of measure and logarithmic Sobolev inequalities. In Séminaire de Probabilités XXXIII. Lecture Notes in Math. 1709 120-216. Berlin: Springer. · Zbl 0957.60016 [30] Ledoux, M. (2001). The Concentration of Measure Phenomenon. Math. Surveys and Monographs 89 . Providence, RI: Amer. Math. Soc. · Zbl 0995.60002 [31] Ledoux, M. (2007). Deviation inequalities on largest eigenvalues. In Geom. Aspects of Funct. Anal., Israel Seminar 2004-2005. Lecture Notes in Math. 1910 167-219. Berlin: Springer. · Zbl 1130.15012 [32] Massart, P. (1990). The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 1269-1283. · Zbl 0713.62021 [33] Maurey, B. (1991). Some deviation inequalities. Geom. Funct. Anal. 1 188-197. · Zbl 0756.60018 [34] Maz’ya, V.G. (1985). Sobolev Spaces . Berlin: Springer. [35] Muckenhoupt, B. (1972). Hardy’s inequality with weights. Studia Math. XLIV 31-38. · Zbl 0236.26015 [36] Pastur, L.A. (1973). Spectra of random selfadjoint operators. Uspehi Mat. Nauk 28 3-64. [37] Ruschendorf, L. (1985). The Wasserstein distance and approximation theorems. Z. Wahrsch. Verw. Gebiete 70 117-129. · Zbl 0554.60024 [38] Sen, P.K. (1974). Weak convergence of multidimensional empirical processes for stationary \varphi -mixing processes. Ann. Probab. 2 147-154. · Zbl 0276.60030 [39] Soshnikov, A. (1999). Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys. 207 697-733. · Zbl 1062.82502 [40] Talagrand, M. (1996). Majorizing measures: The generic chaining. Ann. Probab. 24 1049-1103. · Zbl 0867.60017 [41] Tao, T. and Vu, V. (2009). Random matrices: Universality of local eigenvalue statistics. · Zbl 1217.15043 [42] Timushev, D.A. (2006). On the rate of convergence in probability of the spectral distribution function of a random matrix. Teor. Veroyatn. Primen. 51 618-622. · Zbl 1128.60019 [43] Vallander, S.S. (1973). Calculations of the Vasserstein distance between probability distributions on the line. Teor. Verojatn. Primen. 18 824-827. · Zbl 0351.60009 [44] Yoshihara, K. (1975/76). Weak convergence of multidimensional empirical processes for strong mixing sequences of stochastic vectors. Z. Wahrsch. Verw. Gebiete 33 133-137. · Zbl 0304.60019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.