×

Optimal recovery of harmonic functions in the ball from inaccurate information on the Radon transform. (English. Russian original) Zbl 1327.31011

Math. Notes 98, No. 2, 195-203 (2015); translation from Mat. Zametki 98, No. 2, 163-172 (2015).
Summary: We consider the problem of the optimal recovery of harmonic functions in the ball from inaccurate information on the Radon transform. Presented are the error of the optimal recovery and the set of optimal methods for which this error is attained.

MSC:

31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
31B20 Boundary value and inverse problems for harmonic functions in higher dimensions
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Micchelli, C. A.; Rivlin, T. J., A survey of optimal recovery, 1-54, (1977), New York
[2] Micchelli, C. A.; Rivlin, T. J., Lectures on optimal recovery, 21-93, (1985), Berlin
[3] Magaril-Il’yaev, G. G.; Osipenko, K. Y., Optimal recovery of operators from inaccurate information, 158-192, (2009) · Zbl 1188.35096
[4] Osipenko, K. Y., Optimal interpolation of analytic functions, Mat. Zametki, 12, 465-476, (1972) · Zbl 0248.30033
[5] Osipenko, K. Y.; Stessin, M. I., Hadamard and Schwarz type theorems and optimal recovery in spaces of analytic functions, Constr. Approx., 31, 37-67, (2010) · Zbl 1186.30045
[6] Magaril-Il’yaev, G. G.; Osipenko, K. Y., On the reconstruction of convolution-type operators from inaccurate information, 174-185, (2010) · Zbl 1209.47035
[7] Magaril-Il’yaev, G. G.; Yu. Osipenko, K., On optimal harmonic synthesis from inaccurate spectral data, Funktsional. Anal. Prilozhen., 44, 76-79, (2010) · Zbl 1271.42002
[8] Magaril-Il’yaev, G. G.; Yu. Osipenko, K., Hardy-Littlewood-Paley inequality and recovery of derivatives from inaccurate data, Dokl. Ross. Akad. Nauk, 438, 300-302, (2011) · Zbl 1261.26023
[9] F. Natterer, Mathematics of Computerized Tomography (JohnWiley & Sons, Chichester, 1986). · Zbl 0617.92001
[10] Bagramyan, T. E., Optimal reconstruction of a harmonic function from inaccurate information on the values of the radial integration operator, Vladikavkaz.Mat. Zh., 14, 22-36, (2012) · Zbl 1326.31003
[11] DeGraw, A. J., Optimal recovery of holomorphic functions from inaccurate information about radial integration, Amer. J. Comput. Math., 2, 258-268, (2012)
[12] S. Axler, P. Bourdon, and W Ramey, Harmonic Function Theory, inGrad. Texts inMath. (Springer-Verlag, New York, 2001), Vol. 137. · Zbl 0959.31001
[13] I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products (GIFML, Moscow, 1963; Academic Press, New York-London, 1965).
[14] H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 2: Bessel Functions, Parabolic Cylinder Functions, Orthogonal Polynomials (McGraw-Hill,New York-Toronto-London, 1953; Nauka, Moscow, 1966). · Zbl 0143.29202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.