Chen, Z.; Nikolayevsky, Y.; Nikonorov, Yu Compact geodesic orbit spaces with a simple isotropy group. (English) Zbl 07615656 Ann. Global Anal. Geom. 63, No. 1, Paper No. 7, 34 p. (2023). MSC: 53C30 53C25 22E46 17B10 PDF BibTeX XML Cite \textit{Z. Chen} et al., Ann. Global Anal. Geom. 63, No. 1, Paper No. 7, 34 p. (2023; Zbl 07615656) Full Text: DOI arXiv OpenURL
Chen, Huibin; Zhang, Shaoxiang; Zhu, Fuhai On Randers geodesic orbit spaces. (English) Zbl 1508.53054 Differ. Geom. Appl. 85, Article ID 101939, 17 p. (2022). MSC: 53C25 53C30 53C60 PDF BibTeX XML Cite \textit{H. Chen} et al., Differ. Geom. Appl. 85, Article ID 101939, 17 p. (2022; Zbl 1508.53054) Full Text: DOI OpenURL
Arvanitoyeorgos, Andreas; Souris, Nikolaos Panagiotis; Statha, Marina A review of compact geodesic orbit manifolds and the g.o. condition for \(\operatorname{SU}(5)/\operatorname{S(U}(2) \times \operatorname{U}(2))\). (English) Zbl 1501.53049 Balkan J. Geom. Appl. 27, No. 1, 1-10 (2022). Reviewer: Zdeněk Dušek (České Budějovice) MSC: 53C22 53C30 PDF BibTeX XML Cite \textit{A. Arvanitoyeorgos} et al., Balkan J. Geom. Appl. 27, No. 1, 1--10 (2022; Zbl 1501.53049) Full Text: Link OpenURL
Volchkova, Natal’ya Petrovna; Volchkov, Vitaliĭ Vladimirovich Vector fields with zero flux through circles of fixed radius on \(\mathbb{H}^2\). (Russian. English summary) Zbl 07553766 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 32, No. 1, 3-17 (2022). MSC: 43A85 43A90 33C05 33C70 53A35 PDF BibTeX XML Cite \textit{N. P. Volchkova} and \textit{V. V. Volchkov}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 32, No. 1, 3--17 (2022; Zbl 07553766) Full Text: DOI MNR OpenURL
Statha, Marina Ricci flow on certain homogeneous spaces. (English) Zbl 1502.53078 Ann. Global Anal. Geom. 62, No. 1, 93-127 (2022). Reviewer: Gabriela Paola Ovando (Rosario) MSC: 53C25 53C30 53E20 34A26 PDF BibTeX XML Cite \textit{M. Statha}, Ann. Global Anal. Geom. 62, No. 1, 93--127 (2022; Zbl 1502.53078) Full Text: DOI arXiv OpenURL
Souris, Nikolaos Panagiotis Geodesic orbit spaces of compact Lie groups of rank two. (English) Zbl 1489.53056 Geom. Dedicata 216, No. 1, Paper No. 1, 17 p. (2022). Reviewer: Zdeněk Dušek (České Budějovice) MSC: 53C22 53C30 PDF BibTeX XML Cite \textit{N. P. Souris}, Geom. Dedicata 216, No. 1, Paper No. 1, 17 p. (2022; Zbl 1489.53056) Full Text: DOI arXiv OpenURL
Arvanitoyeorgos, Andreas; Souris, Nikolaos Panagiotis; Statha, Marina Geodesic orbit metrics in a class of homogeneous bundles over real and complex Stiefel manifolds. (English) Zbl 1485.53048 Geom. Dedicata 215, 31-50 (2021). Reviewer: Zdeněk Dušek (České Budějovice) MSC: 53C22 53C30 PDF BibTeX XML Cite \textit{A. Arvanitoyeorgos} et al., Geom. Dedicata 215, 31--50 (2021; Zbl 1485.53048) Full Text: DOI arXiv OpenURL
Xu, Ming Geodesic orbit Finsler spaces with \(K \geq 0\) and the (FP) condition. (English) Zbl 1508.53077 Adv. Geom. 21, No. 4, 551-564 (2021). Reviewer: Igor G. Nikolaev (Urbana) MSC: 53C60 22E46 53C22 PDF BibTeX XML Cite \textit{M. Xu}, Adv. Geom. 21, No. 4, 551--564 (2021; Zbl 1508.53077) Full Text: DOI arXiv OpenURL
Souris, Nikolaos Panagiotis On a class of geodesic orbit spaces with abelian isotropy subgroup. (English) Zbl 1478.53095 Manuscr. Math. 166, No. 1-2, 101-129 (2021). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 53C25 53C30 PDF BibTeX XML Cite \textit{N. P. Souris}, Manuscr. Math. 166, No. 1--2, 101--129 (2021; Zbl 1478.53095) Full Text: DOI arXiv OpenURL
Kostin, A. V. Asymptotic lines on pseudospheres and the angle of parallelism. (English. Russian original) Zbl 1471.53010 Russ. Math. 65, No. 6, 21-28 (2021); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2021, No. 6, 25-34 (2021). MSC: 53A10 53B25 53A35 35Q75 PDF BibTeX XML Cite \textit{A. V. Kostin}, Russ. Math. 65, No. 6, 21--28 (2021; Zbl 1471.53010); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2021, No. 6, 25--34 (2021) Full Text: DOI OpenURL
Zhang, Shaoxiang; Yan, Zaili Geodesic orbit Randers metrics on spheres. (English) Zbl 1477.53072 Adv. Geom. 21, No. 2, 273-280 (2021). MSC: 53C22 53C30 53C60 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{Z. Yan}, Adv. Geom. 21, No. 2, 273--280 (2021; Zbl 1477.53072) Full Text: DOI OpenURL
Arvanitoyeorgos, Andreas; Souris, Nikolaos Panagiotis; Statha, Marina Geodesic orbit metrics in a class of homogeneous bundles over quaternionic Stiefel manifolds. (English) Zbl 1475.53043 J. Geom. Phys. 165, Article ID 104223, 10 p. (2021). Reviewer: Zdeněk Dušek (České Budějovice) MSC: 53C22 53C30 PDF BibTeX XML Cite \textit{A. Arvanitoyeorgos} et al., J. Geom. Phys. 165, Article ID 104223, 10 p. (2021; Zbl 1475.53043) Full Text: DOI arXiv OpenURL
Abu-Saleem, Ahmad; Rustanov, A. R.; Kharitonova, S. V. Axiom of \(\Phi \)-holomorphic \((2r+1)\)-planes for generalized Kenmotsu manifolds. (Russian. English summary) Zbl 1504.53059 Vestn. Tomsk. Gos. Univ., Mat. Mekh. 2020, No. 66, 5-23 (2020). MSC: 53C25 53D15 PDF BibTeX XML Cite \textit{A. Abu-Saleem} et al., Vestn. Tomsk. Gos. Univ., Mat. Mekh. 2020, No. 66, 5--23 (2020; Zbl 1504.53059) Full Text: DOI MNR OpenURL
Gordon, Carolyn S.; Nikonorov, Yuriĭ G. Geodesic orbit Riemannian structures on \(\mathbf{R}^n\). (English) Zbl 1407.53032 J. Geom. Phys. 134, 235-243 (2018). Reviewer: Nabil L. Youssef (Giza) MSC: 53C20 53C25 53C30 53C35 PDF BibTeX XML Cite \textit{C. S. Gordon} and \textit{Y. G. Nikonorov}, J. Geom. Phys. 134, 235--243 (2018; Zbl 1407.53032) Full Text: DOI arXiv OpenURL
Souris, Nikolaos Panagiotis Geodesic orbit metrics in compact homogeneous manifolds with equivalent isotropy submodules. (English) Zbl 1404.53054 Transform. Groups 23, No. 4, 1149-1165 (2018). Reviewer: Xavier Ramos Olivé (Riverside) MSC: 53C22 53C30 53C20 PDF BibTeX XML Cite \textit{N. P. Souris}, Transform. Groups 23, No. 4, 1149--1165 (2018; Zbl 1404.53054) Full Text: DOI arXiv OpenURL
Xu, Ming Geodesic orbit spheres and constant curvature in Finsler geometry. (English) Zbl 1404.53094 Differ. Geom. Appl. 61, 197-206 (2018). Reviewer: Nicoleta Aldea (Brasov) MSC: 53C60 22E46 53C22 PDF BibTeX XML Cite \textit{M. Xu}, Differ. Geom. Appl. 61, 197--206 (2018; Zbl 1404.53094) Full Text: DOI arXiv OpenURL
Chen, Huibin; Chen, Zhiqi; Wolf, Joseph A. Geodesic orbit metrics on compact simple Lie groups arising from flag manifolds. (Métriques définies par les variétés de drapeaux sur les groupes de Lie compacts, simples, dont les géodésiques sont des orbites.) (English. French summary) Zbl 1397.53065 C. R., Math., Acad. Sci. Paris 356, No. 8, 846-851 (2018). Reviewer: Azniv Kasparian (Sofia) MSC: 53C30 14M17 53C25 PDF BibTeX XML Cite \textit{H. Chen} et al., C. R., Math., Acad. Sci. Paris 356, No. 8, 846--851 (2018; Zbl 1397.53065) Full Text: DOI arXiv OpenURL
Dušek, Zdeněk Homogeneous geodesics and g.o. manifolds. (English) Zbl 1401.53041 Note Mat. 38, No. 1, 1-16 (2018). Reviewer: Eugenia Rosado Maria (Madrid) MSC: 53C30 53C22 53C60 PDF BibTeX XML Cite \textit{Z. Dušek}, Note Mat. 38, No. 1, 1--16 (2018; Zbl 1401.53041) Full Text: DOI OpenURL
Batkhin, A. B. A real variety with boundary and its global parameterization. (English. Russian original) Zbl 1455.53075 Program. Comput. Softw. 43, No. 2, 75-83 (2017); translation from Programmirovanie 43, No. 2, 17-27 (2017). MSC: 53C30 13P15 13P10 14P05 53E20 14Q10 PDF BibTeX XML Cite \textit{A. B. Batkhin}, Program. Comput. Softw. 43, No. 2, 75--83 (2017; Zbl 1455.53075); translation from Programmirovanie 43, No. 2, 17--27 (2017) Full Text: DOI OpenURL
Nikonorov, Yuriĭ Gennadievich On the structure of geodesic orbit Riemannian spaces. (English) Zbl 1381.53088 Ann. Global Anal. Geom. 52, No. 3, 289-311 (2017). Reviewer: V. V. Gorbatsevich (Moskva) MSC: 53C30 53C20 53C25 53C35 PDF BibTeX XML Cite \textit{Y. G. Nikonorov}, Ann. Global Anal. Geom. 52, No. 3, 289--311 (2017; Zbl 1381.53088) Full Text: DOI arXiv OpenURL
Karmanova, M. B. Graph surfaces on five-dimensional sub-Lorentzian structures. (English. Russian original) Zbl 1375.53044 Sib. Math. J. 58, No. 1, 91-108 (2017); translation from Sib. Mat. Zh. 58, No. 1, 122-142 (2017). Reviewer: Vyron Vellis (Storrs) MSC: 53C17 PDF BibTeX XML Cite \textit{M. B. Karmanova}, Sib. Math. J. 58, No. 1, 91--108 (2017; Zbl 1375.53044); translation from Sib. Mat. Zh. 58, No. 1, 122--142 (2017) Full Text: DOI OpenURL
Tamaru, Hiroshi The space of left-invariant Riemannian metrics. (English) Zbl 1352.58002 Futaki, Akito (ed.) et al., Geometry and topology of manifolds. 10th China-Japan geometry conference for friendship, held in Shanghai, China, September 7–11, 2014. Tokyo: Springer (ISBN 978-4-431-56019-7/hbk; 978-4-431-56021-0/ebook). Springer Proceedings in Mathematics & Statistics 154, 315-326 (2016). Reviewer: Nicolai K. Smolentsev (Kemerovo) MSC: 58D17 53C25 53C21 22E15 22E25 PDF BibTeX XML Cite \textit{H. Tamaru}, Springer Proc. Math. Stat. 154, 315--326 (2016; Zbl 1352.58002) Full Text: DOI OpenURL
Hashinaga, Takahiro; Tamaru, Hiroshi; Terada, Kazuhiro Milnor-type theorems for left-invariant Riemannian metrics on Lie groups. (English) Zbl 1353.53058 J. Math. Soc. Japan 68, No. 2, 669-684 (2016). Reviewer: Yurii G. Nikonorov (Volgodonsk) MSC: 53C30 53C25 PDF BibTeX XML Cite \textit{T. Hashinaga} et al., J. Math. Soc. Japan 68, No. 2, 669--684 (2016; Zbl 1353.53058) Full Text: DOI arXiv Euclid OpenURL
Karmanova, M. B. The area formula for graphs on 4-dimensional 2-step sub-Lorentzian structures. (English. Russian original) Zbl 1345.53035 Sib. Math. J. 56, No. 5, 852-871 (2015); translation from Sib. Mat. Zh. 56, No. 5, 1068-1091 (2015). Reviewer: Manuel Ritoré (Granada) MSC: 53C17 53C50 PDF BibTeX XML Cite \textit{M. B. Karmanova}, Sib. Math. J. 56, No. 5, 852--871 (2015; Zbl 1345.53035); translation from Sib. Mat. Zh. 56, No. 5, 1068--1091 (2015) Full Text: DOI OpenURL
Berestovskiĭ, Valeriĭ Nikolaevich; Nikonorov, Yuriĭ Gennadievich Generalized normal homogeneous Riemannian metrics on spheres and projective spaces. (English) Zbl 1410.53054 Ann. Global Anal. Geom. 45, No. 3, 167-196 (2014). MSC: 53C35 53C20 53C25 PDF BibTeX XML Cite \textit{V. N. Berestovskiĭ} and \textit{Y. G. Nikonorov}, Ann. Global Anal. Geom. 45, No. 3, 167--196 (2014; Zbl 1410.53054) Full Text: DOI arXiv OpenURL
Berestovskiĭ, V. N. Generalized normal homogeneous spheres \(S^{4n+3}\) with greatest connected motion group \(\mathrm{Sp}{(n+1)\cdot \mathrm{U}(1)}\). (English. Russian original) Zbl 1285.53040 Sib. Math. J. 54, No. 5, 776-789 (2013); translation from Sib. Mat. Zh. 54, No. 5, 972-988 (2013). Reviewer: Hiroshi Tamaru (Hiroshima) MSC: 53C30 PDF BibTeX XML Cite \textit{V. N. Berestovskiĭ}, Sib. Math. J. 54, No. 5, 776--789 (2013; Zbl 1285.53040); translation from Sib. Mat. Zh. 54, No. 5, 972--988 (2013) Full Text: DOI OpenURL
Berestovskiĭ, V. N. Generalized normal homogeneous spheres. (English. Russian original) Zbl 1285.53039 Sib. Math. J. 54, No. 4, 588-603 (2013); translation from Sib. Mat. Zh. 54, No. 4, 742-761 (2013). Reviewer: Claudio Gorodski (Sao Paulo) MSC: 53C30 PDF BibTeX XML Cite \textit{V. N. Berestovskiĭ}, Sib. Math. J. 54, No. 4, 588--603 (2013; Zbl 1285.53039); translation from Sib. Mat. Zh. 54, No. 4, 742--761 (2013) Full Text: DOI OpenURL