Jamilov, Uygun U.; Khamrayev, Akhror. Yu. On dynamics of Volterra and non-Volterra cubic stochastic operators. (English) Zbl 1490.82011 Dyn. Syst. 37, No. 1, 66-82 (2022). Summary: We consider Volterra and non-Volterra cubic stochastic operators. For a Volterra cubic stochastic operator defined on the two-dimensional simplex, it is shown that the vertices and the centre of the simplex are fixed points. The trajectory of such an operator starting from any point from the boundary of the simplex is convergent, and the trajectory of such an operator starting from any point from the interior of the simplex except the centre does not converge. Moreover, therein proven the mean of any trajectory does not converge. For a non-Volterra cubic stochastic operator defined on the two-dimensional simplex, it is proved that the uniqueness of a fixed point, which is repelling and any trajectory starting from the boundary of the simplex converges to a periodic trajectory which consists of three vertices of the simplex. The set of limit points of the trajectory starting from the interior of the simplex except the centre is an infinite subset of the boundary of the simplex. MSC: 82C05 Classical dynamic and nonequilibrium statistical mechanics (general) 37N25 Dynamical systems in biology 92D10 Genetics and epigenetics Keywords:interaction systems; cubic stochastic operator; Volterra cubic stochastic operator; Lyapunov function; trajectory PDF BibTeX XML Cite \textit{U. U. Jamilov} and \textit{Akhror. Yu. Khamrayev}, Dyn. Syst. 37, No. 1, 66--82 (2022; Zbl 1490.82011) Full Text: DOI OpenURL References: [1] Akin, E.; Losert, V., Evolutionary dynamics of zero-sum games, J. Math. Biol., 20, 231-258 (1984) · Zbl 0569.92014 [2] Baxter, R. J.; Wu, F. Y., Ising model on a triangular lattice with three-spin interactions. I. The eigenvalue equation, Aust. J. Phys., 27, 3, 357-367 (1974) [3] Bernstein, S., Solution of a mathematical problem connected with the theory of heredity, Ann. Math. Stat., 13, 1, 53-61 (1942) · Zbl 0063.00333 [4] Davronov, R. R.; Jamilov (Zhamilov), U. U.; Ladra, M., Conditional cubic stochastic operator, J. Differ. Equ. Appl., 21, 12, 1163-1170 (2015) · Zbl 1337.37067 [5] Devaney, R. L., An Introduction to Chaotic Dynamical Systems. Studies in Nonlinearity (2003), Westview Press: Westview Press, Boulder, CO · Zbl 1025.37001 [6] Freedman, H. I.; Waltman, P., Persistence in models of three interacting predator-prey populations, Math. Biosci., 68, 2, 213-231 (1984) · Zbl 0534.92026 [7] Ganikhodzhaev, R. N., Quadratic stochastic operators, Lyapunov functions and tournaments, Sb. Math., 76, 2, 489-506 (1993) · Zbl 0791.47048 [8] Ganikhodzhaev, R. N.; Eshmamatova, D. B., Quadratic automorphisms of a simplex and the asymptotic behavior of their trajectories, Vladikavkaz. Mat. Zh., 8, 2, 12-28 (2006) · Zbl 1313.37014 [9] Ganikhodjaev, N. N.; Rozikov, U. A., On Ising model with four competing interactions on Cayley Tree, Math. Phys. Anal. Geom., 12, 2, 141-156 (2009) · Zbl 1185.60112 [10] Ganikhodjaev, N. N.; Zanin, D. V., On a necessary condition for the ergodicity of quadratic operators defined on a two-dimensional simplex, Russian Math. Surveys, 59, 3, 571-572 (2004) · Zbl 1160.37307 [11] Ganikhodzhaev, R.; Mukhamedov, F.; Rozikov, U., Quadratic stochastic operators and processes: Results and open problems, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 14, 2, 279-335 (2011) · Zbl 1242.60067 [12] Ganikhodjaev, N. N.; Ganikhodjaev, R. N.; Jamilov, U. U., Quadratic stochastic operators and zero-sum game dynamics, Ergodic Theory Dynam. Systems, 35, 5, 1443-1473 (2015) · Zbl 1352.37026 [13] Ganikhodjaev, N. N.; Mohd Rodzhan, M. H.; Omar Baki, N. F.I., Potts model with competing binary-ternary-quaternary interactions on Cayley Tree, J. Phys. Conf. Ser., 1489 (2020) [14] Geiger, P. M.; Knebel, J.; Frey, E., Topologically robust zero-sum games and Pfaffian orientation: How network topology determines the long-time dynamics of the antisymmetric Lotka-Volterra equation, Phys. Rev. E, 98, 6 (2018) [15] Homburg, A. J.; Jamilov, U. U.; Scheutzow, M., Asymptotics for a class of iterated random cubic operators, Nonlinearity, 32, 10, 3646-3660 (2019) · Zbl 1501.37086 [16] Jamilov, U. U., On a family of strictly non-Volterra quadratic stochastic operators, J. Phys. Conf. Ser., 697 (2016) · Zbl 1349.92123 [17] Jamilov, U. U., On symmetric strictly non-Volterra quadratic stochastic operators, Disc. Nonlin. Comp., 5, 3, 263-283 (2016) · Zbl 1349.92123 [18] Jamilov, U. U.; Ladra, M., Non-ergodicity of uniform quadratic stochastic operators, Qual. Theory Dyn. Syst., 15, 1, 257-271 (2016) · Zbl 1344.37093 [19] Jamilov, U. U.; Ladra, M., On identically distributed non-Volterra cubic stochastic operator, J. Appl. Nonlin. Dyn., 6, 1, 79-90 (2017) · Zbl 1365.47004 [20] Jamilov, U. U.; Reinfelds, A., On constrained Volterra cubic stochastic operators, J. Differ. Equ. Appl., 26, 2, 261-274 (2020) · Zbl 1440.37084 [21] Jamilov, U. U.; Reinfelds, A., A family of Volterra cubic stochastic operators, J. Convex Anal., 28, 1, 19-30 (2021) · Zbl 1457.37107 [22] Jamilov, U. U.; Khamraev, A. Yu.; Ladra, M., On a Volterra cubic stochastic operator, Bull. Math. Biol., 80, 2, 319-334 (2018) · Zbl 1398.37092 [23] Khamraev, A. Yu., On cubic operators of Volterra type, Uzbek. Mat. Zh., 2004, 2, 79-84 (2004) [24] Khamraev, A. Yu., A condition for the uniqueness of a fixed point for cubic operators, Uzbek. Mat. Zh., 2005, 1, 79-87 (2005) [25] Khamraev, A. Yu., On a Volterra-type cubic operator, Uzbek. Mat. Zh., 2009, 3, 65-71 (2009) [26] Khamraev, A. Yu.; Tursunova, A. Kh., Full description of the behavior of trajectories of a cubic operator, Prob. Comp. App. Math., 2, 26, 32-38 (2020) [27] Lyubich, Y. I., Mathematical Structures in Population Genetics (1992), Springer-Verlag: Springer-Verlag, Berlin [28] Malevanets, A.; Kapral, R., Solute molecular dynamics in a mesoscale solvent, J. Phys. Chem., 112, 16, 7260-7269 (2000) [29] Mukhamedov, F. M.; Pah, C. H.; Rosli, A., On non-ergodic Volterra cubic stochastic operators, Qual. Theory Dyn. Syst., 18, 3, 1225-1235 (2019) · Zbl 1443.37005 [30] Rozikov, U. A.; Khamraev, A. Yu., On cubic operators defined on finite-dimensional simplices, Ukrainian Math. J., 56, 10, 1699-1711 (2004) · Zbl 1075.37540 [31] Rozikov, U. A.; Khamraev, A. Yu., On construction and a class of non-Volterra cubic stochastic operators, Nonlinear Dyn. Syst. Theory, 14, 1, 92-100 (2014) · Zbl 1322.37018 [32] Skrypnik, W. I., On polymer expansions for generalized Gibbs lattice systems of oscillators with ternary interaction, Ukrainian Math. J., 65, 5, 760-770 (2013) · Zbl 1288.82062 [33] Ulam, S. M., A Collection of Mathematical Problems, 8 (1960), Interscience Publishers: Interscience Publishers, New York-London · Zbl 0086.24101 [34] Zakharevich, M. I., On the behaviour of trajectories and the ergodic hypothesis for quadratic mappings of a simplex, Russian Math. Surveys, 33, 6, 265-266 (1978) · Zbl 0427.58012 [35] Zhamilov, U. U.; Rozikov, U. A., On dynamics of strictly non-Volterra quadratic operators on two-dimensional simplex, Sb. Math., 200, 9, 1339-1351 (2009) · Zbl 1194.47077 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.