×

Asymptotically absorbing nets of positive operators. (English) Zbl 1282.47057

This informative and interesting paper is devoted to asymptotically absorbing nets, continuing and extending some of the earlier works of the first author. Special emphasis here is given to positive operators on \(L^1\) and \(C(X)\) spaces and pointwise convergence. Te paper also contains an extensive list of references on the subject.

MSC:

47B65 Positive linear operators and order-bounded operators
47D07 Markov semigroups and applications to diffusion processes
47-00 General reference works (handbooks, dictionaries, bibliographies, etc.) pertaining to operator theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] C. Aliprantis and O. Burkinshaw, Positive operators (Springer, Dordrecht, 2006).
[2] C. Aliprantis and O. Burkinshaw, Locally solid Riesz spaces with applications to economics, vol. 105 of Mathematical Surveys and Monographs (AmericanMathematical Society, Providence, RI, 2003). · Zbl 1043.46003
[3] S. Alpay, A. Binhadjah, E. Yu. Emelyanov, and Z. Ercan, ”Mean ergodicity of positive operators in KB-spaces,” J. Math. Anal. Appl. 323(1), 371–378 (2006). · Zbl 1106.47014
[4] W. Bartoszek and N. Erkursun, ”On quasi-compact Markov nets,” Ergodic Theory Dynam. Systems 31(4), 1081–1094 (2011). · Zbl 1234.37005
[5] G. D. Birkhoff, ”Proof of the ergodic theorem,” Proc. Nat. Acad. Sci. USA 17(3), 656–660 (1931). · JFM 57.1011.02
[6] A. V. Bukhvalov, A. E. Gutman, V. B. Korotkov, A. G. Kusraev, S. S. Kutateladze, and B.M. Makarov, Vector lattices and integral operators (Kluwer Academic Publishers Group, Dordrecht, 1996). · Zbl 0752.46001
[7] W. F. Eberlein, ”Abstract ergodic theorems and weak almost periodic functions,” Trans. Amer.Math. Soc. 67, 217–240 (1949). · Zbl 0034.06404
[8] E. Yu. Emel’yanov and N. Erkursun, ”Lotz-Räbiger’s nets of Markov operators in L 1-spaces,” J.Math. Anal. Appl. 371(2), 777–783 (2010). · Zbl 1203.37016
[9] E. Yu. Emel’yanov and N. Erkursun, ”Generalization of Eberlein’s and Sine’s ergodic theorems to LR-nets,” Vladikavkaz.Mat. Zh. 9(3), 22–26 (2007) [in Russian]. · Zbl 1324.47019
[10] E. Yu. Emel’yanov and S. G. Gorokhova, ”A sufficient condition for order boundedness of an attractor for a positive mean ergodic operator in a Banach lattice,” Siberian Adv. Math. 9(3), 78–85 (1999). · Zbl 0944.47022
[11] E. Yu. Emel’yanov, F. Räbiger, and M. P. H. Wolff, ”Asymptotic behavior of positive operators on Banach lattices,” Positivity 4(3), 245–251 (2000). · Zbl 0984.47029
[12] E. Yu. Emel’yanov and M. P. H. Wolff, ”Asymptotic behavior of Markov semigroups on preduals of von Neumann algebras,” J. Math. Anal. Appl. 314(2), 749–763 (2006). · Zbl 1098.46052
[13] E. Yu. Emel’yanov and M. P. H. Wolff, ”Mean lower bounds for Markov operators,” Ann. Polon. Math. 83(1), 11–19 (2004). · Zbl 1053.37002
[14] E. Yu. Emel’yanov and M. P. H. Wolff, ”Asymptotic behaviour of Markov semigroups on non commutative L 1-spaces,” QP-PQ: Quantum Probab.White Noise Anal. 15, 77–83 (2003). · Zbl 1038.47031
[15] E. Yu. Emel’yanov and M. P. H. Wolff, ”Quasi constricted linear representations of abelian semigroups on Banach spaces,” Math. Nachr. 233/234, 103–110 (2002). · Zbl 1028.47031
[16] E. Yu. Emel’yanov and M. P. H. Wolff, ”Quasi-constricted linear operators on Banach spaces,” Studia Math. 144(2), 169–179 (2001). · Zbl 0985.47018
[17] E. Yu. Emel’yanov and M. P.H. Wolff, ”Mean ergodicity on Banach lattices and Banach spaces,” Arch. Math. (Basel) 72(3), 214–218 (1999). · Zbl 0938.47006
[18] E. Yu. Emel’yanov and R. Zaharopol, ”Convergence of Lotz-Räbiger nets of operators on spaces of continuous functions,” Rev. Roumaine Math. Pures Appl. 55(1), 1–26 (2010). · Zbl 1230.47030
[19] E. Yu. Emel’yanov, ”On quasi-compactness of operator nets on Banach spaces,” Studia Math. 203, 163–170 (2011). · Zbl 1232.47010
[20] E. Yu. Emel’yanov, ”Asymptotic Behavior of Lotz – Räbiger and Martingale Nets,” Sibirsk. Mat. Zh. 51(5), 1017–1026 (2010) [SiberianMath. J. 51 (5), 810–817 (2010)].
[21] E. Yu. Emel’yanov, Non-spectral asymptotic analysis of one-parameter operator semigroups, vol. 173 of Operator Theory: Advances and Applications (Birkhäuser Verlag, Basel, 2007).
[22] E. Yu. Emel’yanov, ”Positive asymptotically regular operators in L 1-spaces and KB-spaces,” in Positivity IV-theory and applications, Tech. Univ. Dresden, (Dresden, 2006), pp. 53–61. · Zbl 1118.47031
[23] E. Yu. Emel’yanov, ”Some open questions on positive operators in Banach lattices,” Vladikavkaz. Mat. Zh. 7(4), 17–21 (2005). · Zbl 1299.47077
[24] E. Yu. Emel’yanov, ”Regularity conditions for Markov semigroups on abstract L 1-spaces,” Siberian Adv. Math. 14(4), 1–29 (2004).
[25] E. Yu. Emel’yanov, ”Conditions for a C 0-semigroup to be asymptotically finite-dimensional,” Sibirsk. Mat. Zh. 44(5), 1015–1020 (2003) [SiberianMath. J. 44 (5), 793–796 (2003)]. · Zbl 1029.47024
[26] E. Yu. Emel’yanov, ”Invariant densities and mean ergodicity ofMarkov operators,” Israel J. Math. 136, 373–379 (2003). · Zbl 1050.60077
[27] S. G. Gorokhova and E. Yu. Emel’yanov, ”A sufficient condition for the order boundedness of the attractor of a positive ergodic operator acting in a Banach lattice,” Mat. Tr. 2(2), 3–11 (1999) [in Russian]. · Zbl 0944.47022
[28] E. Hewitt and K.A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, B. 115 (Academic Press Inc., Publishers, New York, 1963). · Zbl 0115.10603
[29] A. G. Kachurovskiĭ, ”General theories unifying ergodic averages and martingales,” Tr. Mat. Inst. Steklova 256, 172–200 (2007) [Proc. Steklov Inst. Math. 256 (1), 160–187 (2007)].
[30] S. Kakutani, ”Ergodic theory,” in Proceedings of the International Congress of Mathematicians (Cambridge, Mass., 2 1950), Amer. Math. Soc. (Providence, R. I., 1952), pp. 128–142.
[31] J. J. Koliha, ”Ergodic theory and averaging iterations,” Canad. J. Math. 25, 14–23 (1973). · Zbl 0251.47010
[32] J. Komorník and A. Lasota, ”Asymptotic decomposition ofMarkov operators,” Bull. Polish Acad. Sci. Math. 35(5–6), 321–327 (1987). · Zbl 0642.47026
[33] J. Komorník, ”Asymptotic periodicity of Markov and related operators,” in Dynam. Report. Expositions Dynam. Systems (N.S.), vol 2 (Springer, Berlin, 1993), pp. 31–68. · Zbl 0896.47006
[34] I. Kornfeld and M. Lin, ”Weak almost periodicity of L 1 contractions and coboundaries of non-singular transformations,” Studia Math. 138(3), 225–240 (2000). · Zbl 0955.28009
[35] U. Krengel, Ergodic theorems, vol. 6 of de Gruyter Studies in Mathematics, (Walter de Gruyter & Co., Berlin, 1985).
[36] N.M. Kryloff and N.N. Bogoliouboff, ”Les propriétes ergodiques des suites des probabilités en chaîne,” Comptes RendusMathematique 204, 1386–1388 (1937). · Zbl 0016.31201
[37] N.M. Kryloff and N.N. Bogoliouboff, ”Sur les propriétes en chaîne,” Comptes Rendus Mathematique 204, 1454–1456 (1937). · Zbl 0016.37902
[38] S. S. Kutateladze, Fundamentals of functional analysis, vol. 12 of Kluwer Texts in the Mathematical Sciences (Kluwer Academic Publishers Group, Dordrecht, 1996). · Zbl 1023.46001
[39] A. Lasota, T.-Y. Li, and J. A. Yorke, ”Asymptotic periodicity of the iterates of Markov operators,” Trans. Amer. Math. Soc. 286(2), 751–764 (1984). · Zbl 0564.47015
[40] A. Lasota and M.C. Mackey, Chaos, fractals, and noise, vol. 97 of Applied Mathematical Sciences, Stochastic aspects of dynamics (Springer-Verlag, New York, 1994). · Zbl 0784.58005
[41] A. Lasota, ”Statistical stability of deterministic systems,” vol. 1017 in Lecture Notes in Math. (Springer, Berlin, 1983), pp. 386–419. · Zbl 0532.47027
[42] H. P. Lotz, ”Tauberian theorems for operators on L and similar spaces,” vol. 90 in North-Holland Math. Stud. (North-Holland, Amsterdam, 1984), pp. 117–133.
[43] H. P. Lotz, ”Tauberian theorems for operators on Banach spaces,” Semesterbericht Functionalanalysis (Tübingen, WS, 1983/84), pp. 1–15.
[44] R.J. Nagel, ”Mittelergodische Halbgruppen linearer Operatoren,” Ann. Inst. Fourier (Grenoble) 23(4), 75–87 (1973) [in German]. · Zbl 0252.47003
[45] A. L. T. Paterson, Amenability, vol. 29 ofMathematical Surveys andMonographs (AmericanMathematical Society, Providence, RI, 1988).
[46] F. Räbiger, ”Attractors and asymptotic periodicity of positive operators on Banach lattices,” Forum Math. 7(6), 665–683 (1995). · Zbl 0835.47023
[47] F. Räbiger, ”Stability and ergodicity of dominated semigroups. II. The strong case,” Math. Ann. 297(1), 103–116 (1993). · Zbl 0788.47036
[48] F. Räbiger, ”Stability and ergodicity of dominated semigroups. I. The uniform case,” Math. Z. 214(1), 43–53 (1993). · Zbl 0792.47039
[49] R. Satō, ”On abstract mean ergodic theorems,” TôhokuMath. J. 30(4), 575–581 (1978). · Zbl 0408.47008
[50] H.H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, B. 215 (Springer-Verlag, New York, 1974).
[51] R. Sine, ”Constricted systems,” RockyMountain J.Math. 21(4), 1373–1383 (1991). · Zbl 0830.47024
[52] R. Sine, ”Convex combinations of uniformly mean stable Markov operators,” Proc. Amer. Math. Soc., 51, 123–126 (1975). · Zbl 0319.47005
[53] R. Sine, ”A mean ergodic theorem,” Proc. Amer. Math. Soc. 24, 438–439 (1970). · Zbl 0191.42204
[54] K. V. Storozhuk, ”A condition for asymptotic finite-dimensionality of an operator semigroup,” Sibirsk. Mat. Zh. 52(6), 1389–1393 (2011) [Sib.Math. J. 52 (6), 1104–1107 (2011)]. · Zbl 1242.47035
[55] K. V. Storozhuk, ”Isometries of C (M) which are dense on the torus,” Funct. Anal. Appl. (to appear) · Zbl 1291.47006
[56] K. V. Storozhuk, ”Slowly changing vectors and the asymptotic finite-dimensionality of an operator semigroup,” Sibirsk. Mat. Zh. 50(4), 928–932 (2009) [Sib.Math. J. 50 (4), 737–740 (2009)]. · Zbl 1219.47060
[57] K. V. Storozhuk, ”An extension of the Vu-Sine theorem and compact-supercyclicity,” J. Math. Anal. Appl. 332(2), 1365–1370 (2007). · Zbl 1128.47025
[58] K. V. Storozhuk, ”Stabilizability in asymptotically finite-dimensional semigroups,” Sibirsk. Mat. Zh. 44(6), 1365–1376 (2003) [SiberianMath. J. 44 (6), 1075–1084 (2003)]. · Zbl 1050.47040
[59] Vu Kuok Fong, ”Asymptotic almost periodicity and compactifying representations of semigroups,” Ukrain. Mat. Zh. 38(6), 688–692 (1986) [in Russion]. · Zbl 0617.22005
[60] A. C. Zaanen, Riesz spaces. II, vol. 30 of North-Holland Mathematical Library (North-Holland Publishing Co., Amsterdam, 1983). · Zbl 0519.46001
[61] R. Zaharopol, Invariant probabilities of Markov-Feller operators and their supports, Frontiers in Mathematics (Birkhäuser Verlag, Basel, 2005). · Zbl 1072.37007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.