×

Factorization of multilinear operators defined on products of function spaces. (English) Zbl 07506360

The author obtain strong and interesting results where introduced the factorization of multilinear operators defined on topological product of particular function spaces through a generic continuous multilinear operator. As application, lattice geometric inequalities and integral representations are obtained and some isometries between product factorable multilinear maps and orthogonally additive polynomials are presented.

MSC:

47H60 Multilinear and polynomial operators
47A68 Factorization theory (including Wiener-Hopf and spectral factorizations) of linear operators
47B38 Linear operators on function spaces (general)
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Alaminos, J.; Brešar, M.; Černe, M., Zero product preserving maps on \(####\), J Math Anal Appl, 347, 2, 472-481 (2008) · Zbl 1156.46023
[2] Alaminos, J.; Brešar, M.; Spenko, S., Orthogonally additive polynomials and orthosymmetric maps in Banach algebras with properties \(####\) and \(####\), Proc Edinb Math Soc, 59, 3, 559-568 (2016) · Zbl 1372.43003
[3] Boulabiar, K.; Buskes, G., Vector lattice powers: f-algebras and functional calculus, Comm Algebra, 344, 1435-1442 (2006) · Zbl 1100.46001
[4] Buskes, G.; van Rooij, A., Almost f-algebras: commutativity and Cauchy-Schwarz inequality, Positivity, 4, 227-231 (2000) · Zbl 0987.46002
[5] Buskes, G.; van Rooij, A., Squares of Riesz spaces, Rocky Mountain J Math, 31, 1, 45-56 (2001) · Zbl 0987.46003
[6] Buskes, G.; Kusraeva, AG., Representation and extension of orthoregular bilinear operators, Vladikavkaz Math J, 9, 1, 16-29 (2007) · Zbl 1324.46011
[7] Erdoğan, E.; Calabuig, JM; Sánchez Pérez, EA., Convolution-continuous bilinear operators acting in Hilbert spaces of integrable functions, Ann Funct Anal, 9, 2, 166-179 (2018) · Zbl 06873694
[8] Erdoğan, E.; Gök, Ö., Convolution factorability of bilinear maps and integral representations, Indagationes Mathematicae, 29, 5, 1334-1349 (2018) · Zbl 1423.46059
[9] Ryan, R., Introduction to tensor product of banach spaces (2012), London: Springer-Verlag, London
[10] Dales, HG; Lau, AM; Strauss, D., Second duals of measure algebras, Dissertationes Mathematicae (Rozprawy Matematyczne), 481, 1-121 (2012) · Zbl 1248.43002
[11] Bombal, F.; Villanueva, I., Multilinear operators on spaces of continuous functions, Funct Approx Comment Math XXVI, 117-126 (1998) · Zbl 0919.46020
[12] Cabello Sánchez, F.; García, G.; Villanueva, I., Extension of multilinear operators on Banach spaces, Extracta mathematicae, 152, 291-334 (2000) · Zbl 0982.46006
[13] Taskinen, J., An application of averaging operators to multilinearity, Math Ann, 297, 567-572 (1993) · Zbl 0804.46032
[14] Villanueva, I., Remarks on a theorem of Taskinen on spaces of continuous functions, Math Nachr, 250, 98-103 (2003) · Zbl 1026.47023
[15] Diestel, J.; Jarchow, H.; Tonge, A., Absolutely summing operators (1995), Cambridge University Press · Zbl 0855.47016
[16] Bartle, RG; Dunford, N.; Schwartz, J., Weak compactness and vector measures, Canad J Math, 7, 289-305 (1955) · Zbl 0068.09301
[17] Defant, A.; Floret, K., Tensor norms and operator ideals (1992), Elsevier
[18] Kantorovich, KL, Akilov, GP.Functional analysis. Nauka Moscow;1977 (Russian); English transl Pergamon Press Oxford Elmsford New York; 1982.
[19] Lindenstrauss, J.; Tzafriri, L., Classical Banach spaces II: function spaces (1979), Berlin, Heidelberg: Springer Verlag, Berlin, Heidelberg · Zbl 0403.46022
[20] Sánchez Pérez, EA; Werner, D., Slice continuity for operators and the Daugavet property for bilinear maps, Funct Approx Comment Math, 50, 2, 251-269 (2014) · Zbl 1312.46019
[21] Erdoğan, E.; Sánchez Pérez, EA; Gök, Ö., Product factorability of integral bilinear operators on Banach function spaces, Positivity, 23, 3, 671-696 (2019) · Zbl 07098430
[22] Okada, S.; Ricker, W.; Sánchez Pérez, EA., Optimal domain and integral extension of operators (2008), Birkhauser/Springer
[23] Maligranda, L.; Persson, LE., Generalized duality of some Banach function spaces, Nederl Akad Wetensch Indag Math, 51, 3, 323-338 (1989) · Zbl 0704.46018
[24] Diestel, J.; Uhl, JJ., Vector Measures, Amer Math Soc Providence (1977) · Zbl 0369.46039
[25] Defant, A., Variants of the Maurey-Rosenthal theorem for quasi Köthe function spaces, Positivity, 5, 153-175 (2001) · Zbl 0994.47036
[26] Dineen, S., Complex analysis on infinite dimensional spaces (1999), London: Springer-Verlag, London · Zbl 1034.46504
[27] Sundaresan, K.Geometry of spaces of polynomials on Banach lattices. In: Applied geometry and discrete mathematics. In: DIMACS Ser Discrete Math Theoret Comput Sci vol 4 Amer Math Soc Providence RI; 1991. p. 571-586. · Zbl 0745.46028
[28] Ibort, A, Linares, P, Llavona, JG.On the representation of orthogonally additive polynomials in \(####\). arXiv preprint arXiv:12032968; 2012. · Zbl 1297.46006
[29] Pérez-García, D.; Villanueva, I., Orthogonally additive polynomials on spaces of continuous functions, J Math Anal Appl, 306, 1, 97-105 (2005) · Zbl 1076.46035
[30] Carando, D.; Lassalle, S.; Zalduendo, I., Orthogonally additive polynomials over \(####\) are measures– short proof, Integral Equations Operator Theory, 564, 597-602 (2006) · Zbl 1122.46025
[31] Benyamini, Y.; Lassalle, S.; Llavona, JG., Homogeneous orthogonally additive polynomials on Banach lattices, Bull Lond Math Soc, 383, 459-469 (2006) · Zbl 1110.46033
[32] Ibort, A.; Linares, P.; Llavona, JG., A representation theorem for orthogonally additive polynomials on Riesz spaces, Rev Mat Comput, 251, 21-30 (2012) · Zbl 1297.46006
[33] Kusraeva, ZA., Homogeneous orthogonally additive polynomials on vector lattices, Math Notes, 91, 5-6, 657-662 (2012) · Zbl 1290.46036
[34] Ben Amor, F., Orthogonally additive homogenous polynomials on vector lattices, Comm Algebra, 43, 3, 1118-1134 (2015) · Zbl 1325.46004
[35] Alaminos, J.; Extremera, J.; Godoy, MLC, Orthogonally additive polynomials on convolution algebras associated with a compact group, J Math Anal Appl, 472, 1, 285-302 (2019) · Zbl 1416.43003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.