Dolgopolik, M. V. A new constraint qualification and sharp optimality conditions for nonsmooth mathematical programming problems in terms of quasidifferentials. (English) Zbl 1493.90219 SIAM J. Optim. 30, No. 3, 2603-2627 (2020). The author presents an analysis of a new constraint qualification and a derivation of the strongest existing optimality conditions for nonsmooth mathematical problems with equality and inequality constraints in terms of quasidifferentials. He obtains a convenient description of convex subcones of the contingent cone to a set defined by quasidifferentiable equality and inequality constraints with the use of the new constraint qualification. The author uses this description to obtain the strongest existing necessary optimality conditions for nonsmooth mathematical programming problems in terms of quasidifferentials under less restrictive assumptions than in previous studies. Also, the author presents two examples demonstrating that optimality conditions in terms of quasidifferentials are sometimes better than optimality conditions in terms of various subdifferentials, since they are able to detect the nonoptimality of a given point when optimality conditions based on various subdifferentials fail to do so. Finally, the author presents a comparison between assumptions and constraint qualification used in this paper and those used in previous studies. Reviewer: I. M. Stancu-Minasian (Bucureşti) Cited in 5 Documents MSC: 90C46 Optimality conditions and duality in mathematical programming 90C30 Nonlinear programming 49J52 Nonsmooth analysis Keywords:nonsmooth optimization; quasidifferential; optimality conditions; constraint qualification; contingent cone PDF BibTeX XML Cite \textit{M. V. Dolgopolik}, SIAM J. Optim. 30, No. 3, 2603--2627 (2020; Zbl 1493.90219) Full Text: DOI arXiv OpenURL References: [1] T. Antczak, Optimality conditions in quasidifferentiable vector optimization, J. Optim. Theory Appl., 171 (2016), pp. 708-725. · Zbl 1349.49017 [2] T. Antczak, On optimality conditions and duality results in a class of nonconvex quasidifferentiable optimization problems, Comput. Appl. Math., 36 (2017), pp. 1299-1314. · Zbl 1370.90185 [3] E. K. Basaeva, Necessary conditions for the extremum in vector quasi-differentiable programs, Vladikavkaz. Mat. Zh., 6 (2004), pp. 13-25 (in Russian). · Zbl 1113.90362 [4] E. K. Basaeva, Necessary conditions for an extremum in vector quasidifferentiable extremal problems, Vladikavkaz. Mat. Zh., 10 (2008), pp. 3-10 (in Russian). · Zbl 1324.90186 [5] E. K. Basaeva, A. G. Kusraev, and S. S. Kutateladze, Quasidifferentials in Kantorovich spaces, J. Optim. Theory Appl., 171 (2016), pp. 365-383. · Zbl 1353.49016 [6] J. F. Bonnnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000. [7] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983. · Zbl 0582.49001 [8] V. F. Demyanov, Fixed point theorem in nonsmooth analysis and its applications, Numer. Funct. Anal. Optim., 16 (1995), pp. 53-109. · Zbl 0881.49007 [9] V. F. Demyanov and L. C. W. Dixon, eds., Quasidifferential Calculus, Springer, Berlin, Heidelberg, 1986. · Zbl 0583.00012 [10] V. F. Dem’yanov and L. N. Polyakova, Minimization of a quasi-differentiable function in a quasi-differentiable set, USSR Comput. Math. Math. Phys., 20 (1980), pp. 34-43. [11] V. F. Demyanov, L. N. Polyakova, and A. M. Rubinov, On a generalization of the concept of subdifferential, in All-Union Conference on Dynamic Control: Abstracts of Reports (Sverdlovsk, 1979), 1979, pp. 79-84 (in Russian). [12] V. F. Demyanov and A. M. Rubinov, On quasidifferentiable functionals, Soviet Math. Dokl., 21 (1980), pp. 14-17. · Zbl 0456.49016 [13] V. F. Demyanov and A. M. Rubinov, On quasidifferentiable mappings, Math. Operationforschung Statist. Ser. Optim., 14 (1983), pp. 3-21. · Zbl 0517.90065 [14] V. F. Demyanov and A. M. Rubinov, Constructive Nonsmooth Analysis, Peter Lang, Frankfurt am Main, Germany, 1995. · Zbl 0887.49014 [15] V. F. Demyanov and A. M. Rubinov, eds., Quasidifferentiability and Related Topics, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000. · Zbl 0949.00047 [16] V. F. Demyanov, G. E. Stavroulakis, L. N. Polyakova, and P. D. Panagiotopoulos, Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996. · Zbl 1076.49500 [17] V. F. Demyanov and L. V. Vasiliev, Nondifferentiable Optimization, Springer-Verlag, New York, 1985. [18] S. Di, Classical optimality conditions under weaker assumptions, SIAM J. Optim., 6 (1996), pp. 178-197, https://doi.org/10.1137/0806010. · Zbl 0841.46041 [19] S. Di and R. Poliquin, Contingent cone to a set defined by equality and inequality constraints at a Fréchet differentiable point, J. Optim. Theory Appl., 81 (1994), pp. 469-478. · Zbl 0803.49019 [20] N. Dinh, G. M. Lee, and A. Le Tuan, Generalized Lagrange multipliers for nonconvex directionally differentiable programs, in Continuous Optimization, V. Jeyakumar and A. Rubinov, eds., Springer, New York, 2005, pp. 293-319. · Zbl 1115.90064 [21] N. Dinh and L. A. Tuan, Directional Kuhn-Tucker condition and duality for quasidifferentiable programs, Acta Math. Vietnam., 28 (2003), pp. 17-38. · Zbl 1036.90064 [22] M. V. Dolgopolik, Abstract convex approximations of nonsmooth functions, Optimization, 64 (2015), pp. 1439-1469. · Zbl 1337.49021 [23] M. V. Dolgopolik, Metric regularity of quasidifferentiable mappings and optimality conditions for nonsmooth mathematical programming problems, Set-Valued Var. Anal., 28 (2020), pp. 427-449, https://doi.org/10.1007/s11228-019-00521-4. · Zbl 1491.90167 [24] M. V. Dolgopolik, Constrained Nonsmooth Problems of the Calculus of Variations and Nonsmooth Noether Equations, preprint, https://arxiv.org/abs/2004.14061, 2020. [25] Y. Gao, On the minimal quasidifferential in the one-dimensional case, Soochow J. Math., 24 (1998), pp. 211-218. · Zbl 0930.49009 [26] Y. Gao, Demyanov difference of two sets and optimality conditions of Lagrange multiplier type for constrained quasidifferentiable optimization, J. Optim. Theory Appl., 104 (2000), pp. 377-394. · Zbl 1050.90568 [27] Y. Gao, Optimality conditions with Lagrange multipliers for inequality constrained quasidifferentiable optimization, in Quasidifferentiability and Related Topics, V. F. Demyanov and A. M. Rubinov, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000, pp. 151-162. · Zbl 1029.90077 [28] Y. Gao, New Lagrange multipliers rule for constrained quasidifferentiable optimization, Vietnam J. Math., 30 (2002), pp. 55-69. · Zbl 1026.49012 [29] B. M. Glover, On quasidifferentiable functions and non-differentiable programming, Optimization, 24 (1992), pp. 253-268. · Zbl 0814.49025 [30] B. M. Glover, V. Jeyakumar, and W. Oettli, A Farkas lemma for difference sublinear systems and quasidifferentiable programming, Math. Program., 63 (1994), pp. 109-125. · Zbl 0804.49015 [31] V. V. Gorokhovik, On quasidifferentiability of real-valued functions, Soviet Math. Dokl., 26 (1982), pp. 491-494. · Zbl 0598.26013 [32] V. V. Gorokhovik, Quasidifferentiability of real-valued functions and local extremum conditions, Siberian Math. J., 25 (1984), pp. 388-395. · Zbl 0569.49005 [33] V. V. Gorokhovik, \( \varepsilon \)-quasidifferentiability of real-valued functions and optimality conditions in extremal problems, in Quasidifferential Calculus, V. F. Demyanov and L. C. W. Dixon, eds., Springer, Berlin, Heidelberg, 1986, pp. 203-218. · Zbl 0603.49009 [34] V. V. Gorokhovik, Convex and Nonsmooth Problems of Vector Optimization, Navuka i Tehnika, Minsk, Belarus, 1990 ([in Russian). · Zbl 0765.90079 [35] J. Grzybowski, D. Pallaschke, and R. Urbański, On the reduction of pairs of bounded closed convex sets, Studia Math., 189 (2008), pp. 1-12. · Zbl 1161.52002 [36] J. Grzybowski, D. Pallaschke, and R. Urbański, On the amount of minimal pairs of convex sets, Optim. Methods Softw., 25 (2010), pp. 89-96. · Zbl 1192.52001 [37] J. Grzybowski and R. Urbański, Three criteria of minimality for pairs of compact convex sets, Optimization, 55 (2006), pp. 569-576. · Zbl 1134.52002 [38] M. Handschug, On equivalent quasidifferentials in the two-dimensional case, Optimization, 20 (1989), pp. 37-43. · Zbl 0682.49013 [39] A. Ioffe, A Lagrange multiplier rule with small convex-valued subdifferentials for nonsmooth problems of mathematical programming involving equality and nonfunctional constraints, Math. Program., 58 (1993), pp. 137-145. · Zbl 0782.90095 [40] A. D. Ioffe, Approximate subdifferentials and applications I: The finite dimensional theory, Trans. Amer. Math. Soc., 281 (1984), pp. 389-416. · Zbl 0531.49014 [41] A. D. Ioffe, On the theory of subdifferentials, Adv. Nonlinear Anal., 1 (2012), pp. 47-120. · Zbl 1277.49019 [42] A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems, North-Holland, Amsterdam, 1979. · Zbl 0407.90051 [43] Y. Ishizuka, Optimality conditions for quasi-differentiable programs with application to two-level optimization, SIAM J. Control Optim., 26 (1988), pp. 1388-1398, https://doi.org/10.1137/0326079. · Zbl 0661.90081 [44] L. Kuntz and S. Scholtes, A note on constraint qualifications in quasidifferentiable programming, in Advances in Optimization, W. Oettli and D. Pallaschke, eds., Springer, Berlin, Heidelberg, 1992, pp. 525-527. · Zbl 0774.90076 [45] L. Kuntz and S. Scholtes, Constraint qualifications in quasidifferentiable optimization, Math. Program., 60 (1993), pp. 339-347. · Zbl 0784.90080 [46] A. G. Kusraev and S. S. Kutateladze, Subdifferentials. Theory and Applications. Part 2, Izd-vo In-ta Mathematiki, Novosibirsk, Russia, 2002 (in Russian). [47] B. Luderer, Does the special choice of quasidifferentials influence necessary minimum conditions?, in Advances in Optimization, W. Oettli and D. Pallaschke, eds., Springer, Berlin, 1992, pp. 256-266. · Zbl 0766.90069 [48] B. Luderer and R. Rösiger, On Shapiro’s results in quasidifferential calculus, Math. Program., 46 (1990), pp. 403-407. · Zbl 0699.90084 [49] B. Luderer, R. Rösiger, and U. Würker, On necessary conditions in quasidifferential calculus: Independence of the specific choice of quasidifferentials, Optimization, 22 (1991), pp. 643-660. · Zbl 0739.49011 [50] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic Theory, Springer-Verlag, Berlin, Heidelberg, 2006. [51] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation II: Applications, Springer-Verlag, Berlin, Heidelberg, 2006. [52] D. Pallaschke, P. Recht, and R. Urbański, On locally-Lipschitz quasi-differentiable functions in Banach spaces, Optimization, 17 (1986), pp. 287-295. · Zbl 0597.49011 [53] D. Pallaschke and R. Urbański, Some criteria for the minimality of pairs of compact convex sets, Z. Oper. Res., 37 (1993), pp. 129-150. · Zbl 0781.49011 [54] D. Pallaschke and R. Urbański, Quasidifferentiable calculus and minimal pairs of compact convex sets, Schedae Informaticae, 21 (2012), pp. 107-125. [55] J.-P. Penot, Calculus without Derivatives, Springer, New York, 2013. · Zbl 1264.49014 [56] L. N. Polyakova, Necessary conditions for an extremum of quasidifferentiable functions, Vestnik Leningrad Univ. Math., 13 (1981), pp. 241-247. · Zbl 0468.90067 [57] L. N. Polyakova, On the minimization of a quasidifferentiable function subject to equality-type quasidifferentiable constraints, in Quasidifferential Calculus, V. F. Demyanov and L. C. W. Dixon, eds., Springer, Berlin, Heidelberg, 1986, pp. 44-55. · Zbl 0601.90127 [58] S. Scholtes, Minimal pairs of convex bodies in two dimensions, Mathematika, 39 (1992), pp. 267-273. · Zbl 0759.52004 [59] A. Shapiro, On optimality conditions in quasidifferentiable optimization, SIAM J. Control Optim., 22 (1984), pp. 610-617, https://doi.org/10.1137/0322037. · Zbl 0561.49014 [60] A. Shapiro, Quasidifferential calculus and first-order optimality conditions in nonsmooth optimization, in Quasidifferential Calculus, V. F. Demyanov and L. C. W. Dixon, eds., Springer, Berlin, Heidelberg, 1986, pp. 56-68. · Zbl 0604.49012 [61] C.-L. Song, Z.-Q. Xia, and L.-W. Zhang, An optimality condition for quasidifferentiable programming with an abstract constraint, Int. J. Pure Appl. Math., 27 (2006), pp. 293-298. · Zbl 1125.49013 [62] C. Sutti, Optimality conditions in quasidifferentiable mathematical programming, J. Inform. Optim. Sci., 13 (1992), pp. 375-381. · Zbl 0789.49010 [63] A. Uderzo, Quasi-multiplier rules for quasidifferentiable extremum problems, Optimization, 51 (2002), pp. 761-795. · Zbl 1145.90463 [64] A. Uderzo, Fréchet quasidifferential calculus with applications to metric regularity of continuous maps, Optimization, 54 (2005), pp. 469-493. · Zbl 1088.49014 [65] A. Uderzo, Stability properties of quasidifferentiable systems, Vestnik St. Petesb. Univ. Ser. 10 Appl. Math. Inform. Control Process., 3 (2006), pp. 70-84 (in Russian). [66] A. Uderzo, Convex difference criteria for the quantitative stability of parametric quasidifferentiable systems, Set-Valued Anal., 15 (2007), pp. 81-104. · Zbl 1156.90018 [67] X. Wang and V. Jeyakumar, A sharp Lagrange multiplier rule for nonsmooth mathematical programming problems involving equality constraints, SIAM J. Optim., 10 (2000), pp. 1136-1148, https://doi.org/10.1137/S1052623499354540. · Zbl 1047.90075 [68] Z. Wang and R. Mortensen, Necessary minimum conditions and steepest descent directions in quasi-differentiable calculus: Independence of the specific forms of quasidifferentials, Optimization, 31 (1994), pp. 223-232. · Zbl 0819.90105 [69] D. E. Ward, A constraint qualification in quasidifferentiable programming, Optimization, 22 (1991), pp. 661-668. · Zbl 0741.90069 [70] Z.-Q. Xia, C.-L. Song, and L.-W. Zhang, On Fritz John and KKT necessary conditions of constrained quasidifferentiable optimization, Int. J. Pure Appl. Math., 23 (2005), pp. 299-310. · Zbl 1160.90690 [71] E. Zeidler, Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems, Springer-Verlag, New York, 1986. · Zbl 0583.47050 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.