Boccuto, Antonio Hahn-Banach-type theorems and subdifferentials for invariant and equivariant order continuous vector lattice-valued operators with applications to optimization. (English) Zbl 1491.46074 Tatra Mt. Math. Publ. 78, 139-156 (2021). Summary: We give some versions of Hahn-Banach, sandwich, duality, Moreau-Rockafellar-type theorems, optimality conditions and a formula for the subdifferential of composite functions for order continuous vector lattice-valued operators, invariant or equivariant with respect to a fixed group \(G\) of homomorphisms. As applications to optimization problems with both convex and linear constraints, we present some Farkas and Kuhn-Tucker-type results. MSC: 46N10 Applications of functional analysis in optimization, convex analysis, mathematical programming, economics 28B15 Set functions, measures and integrals with values in ordered spaces 43A07 Means on groups, semigroups, etc.; amenable groups 47N10 Applications of operator theory in optimization, convex analysis, mathematical programming, economics 49K27 Optimality conditions for problems in abstract spaces Keywords:vector lattice; order bounded functional; order continuous functional; amenability; Hahn-Banach theorem; sandwich theorem; Fenchel duality theorem; subgradient; subdifferential of composite functions; optimality condition; Moreau-Rockafellar formula; Farkas theorem; Kuhn-Tucker theorem × Cite Format Result Cite Review PDF Full Text: DOI References: [1] ALIPRANTIS, CH. D.—BURKINSHAW, O.: Positive Operators, Springer, Dordrecht, 2006. · Zbl 1098.47001 [2] ASDRUBALI, F.—BALDINELLI, G.—BIANCHI, F.—COSTARELLI, D.—ROTILI, A.—SERACINI, M.—VINTI, G.: Detection of thermal bridges from thermographic images by means of image processing approximation algorithms, Appl. Math. Comput. 317 (2018), 160-171. · Zbl 1426.94008 [3] BAZARAA, M. S.—SHERALI, H. D.—SHETTY, C. M.: Nonlinear Programming. Theory and Algorithms. Wiley-Interscience, John Wiley & Sons, Inc., Hoboken, New Jersey, 2006. · Zbl 1140.90040 [4] BOCCUTO, A.: Hahn-Banach-type theorems and applications to optimization for partially ordered vector space-valued invariant operators, Real Anal. Exchange 44 (2019), no. 2, 333-368. · Zbl 1444.46003 [5] BOCCUTO, A.: Hahn-Banach and sandwich theorems for equivariant vector latticevalued operators and applications, Tatra Mt. Math. Publ. 76 (2020), 11-34. · Zbl 07439074 [6] BOCCUTO, A.—CANDELORO, D.: Sandwich theorems, extension principles and amenability, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 257-271. · Zbl 0878.46002 [7] BOCCUTO, A.—CANDELORO, D.: Integral and Ideals in Riesz Spaces, Inform. Sci.179 (2009), no. 2, 891-2902. · Zbl 1185.28016 [8] BOCCUTO, A.—GERACE, I.—GIORGETTI, V.: A blind source separation technique for document restoration, SIAM J. Imaging Sciences 12 (2019), no. 2, 1135-1162. · Zbl 1524.65092 [9] CANDELORO, D.—MESIAR, R.—SAMBUCINI, A. R.: A special class of fuzzy measures: Choquet integral and applications, Fuzzy Sets Systems 355 (2019), 83-99. · Zbl 1423.28042 [10] CHOJNACKI, W.: Sur un théorème de Day, un théorème de Mazur-Orlicz et une généralisation de quelques théorèmes de Silverman, Colloq. Math. 50 (1986), 257-262. · Zbl 0595.43002 [11] CLUNI, F.—COSTARELLI, D.—MINOTTI, A.M.—VINTI, G.: Enhancement of thermographic images as tool for structural analysis in earthquake engineering, NDT & E International 70 (2015), no. 4, 60—72. [12] COSTARELLI, D.—SERACINI, M.—VINTI, G.: A segmentation procedure of the pervious area of the aorta artery from CT images without contrast medium, Math. Methods Appl. Sci. 43 (2020), no. 1, 114-133. · Zbl 1447.92210 [13] EATON, M.L.: Group Invariance Applications in Statistics. In: NSF-CBMS Regional Conference Series in Probability and Statistics Vol.1, Institute of Mathematical Statistics, Hayward, CA, 1989. · Zbl 0749.62005 [14] GOODFELLOW, I.—BENGIO, Y.—COURVILLE, A.: Deep Learning, MIT Press, Cambridge, MA, 2016. · Zbl 1373.68009 [15] ELSTER, K.-H.—NEHSE, R.: Necessary and sufficient conditions for the order-completeness of partially ordered vector spaces, Math. Nachr. 81 (1978), 301-311. · Zbl 0316.90055 [16] KUSRAEV, A. G.—KUTATELADZE, S.S.: Subdifferentials: Theory and applications. Kluwer Academic Publ., Dordrecht, 1995. · Zbl 0832.49012 [17] KUTATELADZE, S.S.: Boolean models and simultaneous inequalities, Vladikavkaz Math. J. 11 (2009), no. 3, 44-50. · Zbl 1324.03040 [18] KUTATELADZE, S.S.: The Farkas lemma revisited, Sibirsk. Mat. Zh. 51 (2020), no. 1, 98—109. (In Russian); Sib. Math. J. 51 (2010), no. 1, 78-87. (English translation) · Zbl 1225.15020 [19] LUXEMBURG, W. A.J.—MASTERSON, J.J.: An extension of the concept of the order-dual of a Riesz space, Canad. J. Math. 19 (1976), 488-498. · Zbl 0147.11101 [20] LUXEMBURG, W. A. J.—ZAANEN, A.C.: Riesz Spaces. I. North-Holland Publ. Co., Amsterdam, 1971. · Zbl 0231.46014 [21] MANGASARIAN, O. L.: Nonlinear Programming, McGraw-Hill Book Co., New York, 1969. · Zbl 0194.20201 [22] PATERSON, A.L.T.: Amenability. Amer. Math. Soc., Providence, Rhode Island, 1988. · Zbl 0648.43001 [23] PERESSINI, A. L.: Ordered Topological Vector Spaces. Harper & Row, New York, 1967. · Zbl 0169.14801 [24] PFLUG, G. CH.—RŐMISCH, W.: Modeling, Measuring and Managing Risk. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007. · Zbl 1153.91023 [25] SAMBUCINI, A. R.: The Choquet integral with respect to fuzzy measures and applications, Math. Slovaca 67 (2017), no. 6, 1427-1450. · Zbl 1505.28021 [26] SILVERMAN, R.: Invariant means and cones with vector interiors, Trans. Amer. Math. Soc. 88 (1958), no. 1, 75-79. · Zbl 0081.33102 [27] SILVERMAN, R.—YEN, T.: Addendum to: Invariant means and cones with vector interiors, Trans. Amer. Math. Soc. 88 (1958), no. 2, 327-330. · Zbl 0085.09503 [28] ZOWE, J.: A duality theorem for a convex programming problem in order complete vector lattices, J. Math. Anal. Appl. 50 (1975), 273-287. · Zbl 0314.90079 [29] ZOWE, J.: The saddle point theorem of Kuhn and Tucker in ordered vector spaces, J. Math. Anal. Appl. 57 (1977), 41-55. · Zbl 0354.90070 [30] ZOWE, J.: Sandwich theorems for convex operators with values in an ordered vector space, J. Math. Anal. Appl. 66 (1978), 282-296. · Zbl 0389.46003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.