×

Geometry of root elements in groups of type \(E_6\). (English. Russian original) Zbl 1285.20048

St. Petersbg. Math. J. 23, No. 3, 603-635 (2012); translation from Algebra Anal. 23, No. 3, 261-309 (2011).
Let \(G=G_{\mathrm{SC}}(\mathrm E_6,K)\) be the simply connected Chevalley group of type \(\mathrm E_6\) over a field \(K\), and let \(V\) be a minimal 27-dimensional module for \(G\). There exists a trilinear form \(F\colon V\times V\times V\to K\) such that \(G\) is the group of isometries of \(F\), and we define a subspace \(U\) of \(V\) to be singular if \(F(u_1,u_2,v)=0\) for all \(u_1,u_2\in U\) and \(v\in V\) (in fact this definition must be slightly adjusted if \(\mathrm{char}(K)=2\)).
The aim of this paper is to study the relationship between the geometry of \(V\) and the root elements of \(G\). The primary result of the paper establishes a natural correspondence between root subgroups and six-dimensional singular subspaces. Indeed one can easily construct an injective map from the set of all root subgroups to the set of six-dimensional singular subspaces as follows: for a nontrivial root element \(g\in G\), define \(V^g:=\mathrm{Im}(g-I)\) where \(I\) is the identity. One can check that \(V^g\) is 6-dimensional and singular and, moreover, that the same singular subspace corresponds to elements of the same root subgroup, while different subspaces correspond to elements of different root subgroups. It remains to prove surjectivity, which is a difficult task.
Once this correspondence is proved, the author makes use of it to prove a result concerning the ‘relative position’ of two root subgroups, the study of which has received a lot of attention in the literature. In particular the author connects the angle between two root elements \(g\) and \(h\) with the dimension of the singular subspace \(V^g\cap V^h\).
In the final section of the paper the author considers the problem of describing the subgroup generated by a triple of root subgroups, two of which are opposite. A full solution to this problem is given for the groups \(\mathrm{SO}_{2n}(K)\) and \(G_{\mathrm{SC}}(\mathrm E_6,K)\).
The author goes to some effort to motivate each of the main results with reference to the state of the literature. In addition the paper contains a wealth of background material concerning the group \(G_{\mathrm{SC}}(\mathrm E_6,K)\).

MSC:

20G41 Exceptional groups
17B22 Root systems
20G05 Representation theory for linear algebraic groups
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] E. L. Bashkirov, Linear groups generated by two long root subgroups, Sibirsk. Mat. Zh. 34 (1993), no. 2, 15 – 22, 226, 233 (Russian, with English and Russian summaries); English transl., Siberian Math. J. 34 (1993), no. 2, 210 – 217 (1994). · Zbl 0834.20047 · doi:10.1007/BF00970946
[2] E. L. Bashkirov, Linear groups that contain a root subgroup, Sibirsk. Mat. Zh. 37 (1996), no. 6, 1238 – 1255, ii (Russian, with Russian summary); English transl., Siberian Math. J. 37 (1996), no. 6, 1086 – 1100. · Zbl 0874.20031 · doi:10.1007/BF02106733
[3] E. L. Bashkirov, On subgroups of the general linear group of degree four over the skew field of quaternions containing the special unitary group of index one, Algebra i Analiz 13 (2001), no. 3, 18 – 42 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 13 (2002), no. 3, 353 – 372.
[5] -, Linear groups over division algebra containing subgroups of quadratic unipotent elements, Dokt. diss., Belorus. Gos. Univ. Inform. i Radioelektroniki, 2006. (Russian)
[6] Armand Borel, Properties and linear representations of Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 1 – 55. · Zbl 0793.01013
[7] Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4 – 6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. · Zbl 1120.17002
[8] Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 7 – 9, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2005. Translated from the 1975 and 1982 French originals by Andrew Pressley. · Zbl 0319.17002
[9] N. A. Vavilov, The geometry of long root subgroups in Chevalley groups, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. vyp. 1 (1988), 8 – 11, 116 (Russian, with English summary); English transl., Vestnik Leningrad Univ. Math. 21 (1988), no. 1, 5 – 10. · Zbl 0662.20038
[10] N. A. Vavilov, Bruhat decomposition for long root semisimple elements in Chevalley groups, Rings and modules. Limit theorems of probability theory, No. 2 (Russian), Leningrad. Univ., Leningrad, 1988, pp. 18 – 39, 212 (Russian).
[11] N. A. Vavilov, Subgroups of split orthogonal groups over a ring, Sibirsk. Mat. Zh. 29 (1988), no. 4, 31 – 43, 222 (Russian); English transl., Siberian Math. J. 29 (1988), no. 4, 537 – 547 (1989). · Zbl 0694.20032 · doi:10.1007/BF00969861
[12] N. Vavilov, Geometry of 1-tori in \?\?_{\?}, Algebra i Analiz 19 (2007), no. 3, 119 – 150 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 19 (2008), no. 3, 407 – 429.
[13] N. A. Vavilov, How is one to view the signs of structure constants?, Algebra i Analiz 19 (2007), no. 4, 34 – 68 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 19 (2008), no. 4, 519 – 543.
[14] N. A. Vavilov and M. R. Gavrilovich, \?\(_{2}\)-proof of structure theorems for Chevalley groups of types \?\(_{6}\) and \?\(_{7}\), Algebra i Analiz 16 (2004), no. 4, 54 – 87 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 16 (2005), no. 4, 649 – 672.
[15] N. A. Vavilov, M. R. Gavrilovich, and S. I. Nikolenko, The structure of Chevalley groups: a proof from The Book, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 330 (2006), no. Vopr. Teor. Predst. Algebr. i Grupp. 13, 36 – 76, 271 – 272 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 140 (2007), no. 5, 626 – 645. · Zbl 1162.20032 · doi:10.1007/s10958-007-0003-y
[16] N. A. Vavilov and A. Yu. Luzgarev, The normalizer of Chevalley groups of type \?\(_{6}\), Algebra i Analiz 19 (2007), no. 5, 37 – 64 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 19 (2008), no. 5, 699 – 718.
[17] N. A. Vavilov, A. Yu. Luzgarev, and I. M. Pevzner, A Chevalley group of type \?\(_{6}\) in the 27-dimensional representation, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 338 (2006), no. Vopr. Teor. Predst. Algebr. i Grupp. 14, 5 – 68, 261 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 145 (2007), no. 1, 4697 – 4736. · Zbl 1124.20032 · doi:10.1007/s10958-007-0304-1
[18] N. A. Vavilov and V. V. Nesterov, Geometry of microweight tori, Vladikavkaz. Mat. Zh. 10 (2008), no. 1, 10 – 23 (Russian, with Russian summary). · Zbl 1324.20026
[19] -, Pairs of microweight tori in a Chevalley group of type \( \mathrm E_6\), Algebra i Analiz (in preparation).
[20] N. A. Vavilov and S. I. Nikolenko, \?\(_{2}\)-proof of structure theorems for a Chevalley group of type \?\(_{4}\), Algebra i Analiz 20 (2008), no. 4, 27 – 63 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 20 (2009), no. 4, 527 – 551.
[21] N. A. Vavilov and I. M. Pevzner, Triples of long root subgroups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 343 (2007), no. Vopr. Teor. Predts. Algebr. i Grupp. 15, 54 – 83, 272 – 273 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 147 (2007), no. 5, 7005 – 7020. · doi:10.1007/s10958-007-0526-2
[22] N. A. Vavilov, E. B. Plotkin, and A. V. Stepanov, Calculations in Chevalley groups over commutative rings, Dokl. Akad. Nauk SSSR 307 (1989), no. 4, 788 – 791 (Russian); English transl., Soviet Math. Dokl. 40 (1990), no. 1, 145 – 147. · Zbl 0795.20028
[23] N. A. Vavilov and A. A. Semenov, Bruhat decomposition for long root tori in Chevalley groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 175 (1989), no. Kol\(^{\prime}\)tsa i Moduli. 3, 12 – 23, 162 (Russian); English transl., J. Soviet Math. 57 (1991), no. 6, 3453 – 3458. · Zbl 0746.20024 · doi:10.1007/BF01100112
[24] N. A. Vavilov and A. A. Semenov, Long root semisimple elements in Chevalley groups, Dokl. Akad. Nauk 338 (1994), no. 6, 725 – 727 (Russian); English transl., Russian Acad. Sci. Dokl. Math. 50 (1995), no. 2, 325 – 329. · Zbl 0859.20035
[25] Семинар по группам Ли и алгебраическим группам, ”Наука”, Мосцощ, 1988 (Руссиан). · Zbl 0876.22001
[26] A. E. Zalesskiĭ, Linear groups, Uspekhi Mat. Nauk 36 (1981), no. 5(221), 57 – 107, 248 (Russian).
[27] A. E. Zalesskiĭ, Linear groups, Current problems in mathematics. Fundamental directions, Vol. 37 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 114 – 228, 236 (Russian).
[28] A. E. Zalesskiĭ and V. N. Serežkin, Linear groups generated by transvections, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 1, 26 – 49, 221 (Russian). · Zbl 0333.20038
[29] A. S. Kondrat\(^{\prime}\)ev, Subgroups of finite Chevalley groups, Uspekhi Mat. Nauk 41 (1986), no. 1(247), 57 – 96, 240 (Russian).
[30] A. Yu. Luzgarev, On overgroups of \?(\?\(_{6}\),\?) and \?(\?\(_{7}\),\?) in minimal representations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 319 (2004), no. Vopr. Teor. Predst. Algebr. i Grupp. 11, 216 – 243, 302 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 134 (2006), no. 6, 2558 – 2571. · Zbl 1104.20050 · doi:10.1007/s10958-006-0127-5
[31] A. Yu. Luzgarëv, Description of the overgroups \?\(_{4}\) in \?\(_{6}\) over a commutative ring, Algebra i Analiz 20 (2008), no. 6, 148 – 185 (Russian); English transl., St. Petersburg Math. J. 20 (2009), no. 6, 955 – 981.
[32] A. Yu. Luzgarëv and I. M. Pevzner, Some facts about the life of \?\?(5,\Bbb Z), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 305 (2003), no. Vopr. Teor. Predst. Algebr. i Grupp. 10, 153 – 162, 240 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 130 (2005), no. 3, 4729 – 4733. · Zbl 1146.20311 · doi:10.1007/s10958-005-0368-8
[33] Кубические формы: алгебра, геометрия, арифметика, Издат. ”Наука”, Мосцощ, 1972 (Руссиан). Ю. И. Манин анд М. Хазещинкел, Цубиц формс: алгебра, геометры, аритхметиц, Нортх-Холланд Публишинг Цо., Амстердам-Лондон; Америцан Елсевиер Публишинг Цо., Нещ Ыорк, 1974. Транслатед фром тхе Руссиан бы М. Хазещинкел; Нортх-Холланд Матхематицал Либрары, Вол. 4.
[34] V. V. Nesterov, Pairs of short root subgroups in Chevalley groups, Dokl. Akad. Nauk 357 (1997), no. 3, 302 – 305 (Russian). · Zbl 0963.20022
[35] V. V. Nesterov, Pairs of short root subgroups in a Chevalley group of type \?\(_{2}\), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 281 (2001), no. Vopr. Teor. Predst. Algebr. i Grupp. 8, 253 – 273, 284 – 285 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 120 (2004), no. 4, 1630 – 1641. · Zbl 1078.20048 · doi:10.1023/B:JOTH.0000017893.66315.ba
[36] V. V. Nesterov, Generation of pairs of short root subgroups in Chevalley groups, Algebra i Analiz 16 (2004), no. 6, 172 – 208 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 16 (2005), no. 6, 1051 – 1077.
[37] O. T. O’Meara, Lectures on linear groups, American Mathematical Society, Providence, R.I., 1974. Expository Lectures from the CBMS Regional Conference held at Arizona State University, Tempe, Ariz., March 26 – 30, 1973; Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 22. · Zbl 0292.20001
[38] Геометрия групп Ли, Московский Центр Непрерывного Математического Образования, Мосцощ, 2003 (Руссиан, щитх Руссиан суммары). Симметрические, параболические и периодические пространства. [Сымметриц, параболиц, анд периодиц спацес]. · Zbl 1104.53001
[39] A. A. Semenov, Bruhat decomposition for long root semisimple tori in Chevalley groups, Kand. diss., S.-Peterburg. Gos. Univ., St. Petersburg, 1991. (Russian)
[40] T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. · Zbl 0927.20024
[41] Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. · Zbl 1196.22001
[42] James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 21. · Zbl 0325.20039
[43] James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. · Zbl 0447.17001
[44] Michael Aschbacher, The 27-dimensional module for \?\(_{6}\). I, Invent. Math. 89 (1987), no. 1, 159 – 195. · Zbl 0629.20018 · doi:10.1007/BF01404676
[45] Michael Aschbacher, The 27-dimensional module for \?\(_{6}\). II, J. London Math. Soc. (2) 37 (1988), no. 2, 275 – 293. · Zbl 0662.20030 · doi:10.1112/jlms/s2-37.2.275
[46] Michael Aschbacher, The 27-dimensional module for \?\(_{6}\). III, Trans. Amer. Math. Soc. 321 (1990), no. 1, 45 – 84. · Zbl 0698.20030
[47] Michael Aschbacher, The 27-dimensional module for \?\(_{6}\). IV, J. Algebra 131 (1990), no. 1, 23 – 39. · Zbl 0698.20031 · doi:10.1016/0021-8693(90)90164-J
[48] Michael Aschbacher, Some multilinear forms with large isometry groups, Geom. Dedicata 25 (1988), no. 1-3, 417 – 465. Geometries and groups (Noordwijkerhout, 1986). · Zbl 0646.20033 · doi:10.1007/BF00191936
[49] Michael Aschbacher, The geometry of trilinear forms, Finite geometries, buildings, and related topics (Pingree Park, CO, 1988) Oxford Sci. Publ., Oxford Univ. Press, New York, 1990, pp. 75 – 84. · Zbl 0752.11020
[50] Michael Aschbacher and Gary M. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J. 63 (1976), 1 – 91. · Zbl 0359.20014
[51] Evgenii L. Bashkirov, Some completely reducible linear groups over a quaternion division ring containing a root subgroup, Comm. Algebra 31 (2003), no. 12, 5727 – 5754. · Zbl 1049.20030 · doi:10.1081/AGB-120024851
[52] Evgenii L. Bashkirov, Irreducible linear groups of degree 3 over a quaternion division ring containing a root subgroup, Comm. Algebra 32 (2004), no. 5, 1747 – 1761. · Zbl 1072.20059 · doi:10.1081/AGB-120029900
[54] Ronald Brown and Stephen P. Humphries, Orbits under symplectic transvections. I, Proc. London Math. Soc. (3) 52 (1986), no. 3, 517 – 531. , https://doi.org/10.1112/plms/s3-52.3.517 Ronald Brown and Stephen P. Humphries, Orbits under symplectic transvections. II. The case \?=\?\(_{2}\), Proc. London Math. Soc. (3) 52 (1986), no. 3, 532 – 556. , https://doi.org/10.1112/plms/s3-52.3.532 Ronald Brown and Stephen P. Humphries, Orbits under symplectic transvections. I, Proc. London Math. Soc. (3) 52 (1986), no. 3, 517 – 531. , https://doi.org/10.1112/plms/s3-52.3.517 Ronald Brown and Stephen P. Humphries, Orbits under symplectic transvections. II. The case \?=\?\(_{2}\), Proc. London Math. Soc. (3) 52 (1986), no. 3, 532 – 556. · Zbl 0604.51008 · doi:10.1112/plms/s3-52.3.532
[55] P. J. Cameron and J. I. Hall, Some groups generated by transvection subgroups, J. Algebra 140 (1991), no. 1, 184 – 209. · Zbl 0763.20016 · doi:10.1016/0021-8693(91)90153-Y
[56] Roger W. Carter, Simple groups of Lie type, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989. Reprint of the 1972 original; A Wiley-Interscience Publication. · Zbl 0723.20006
[57] Claude Chevalley and R. D. Schafer, The exceptional simple Lie algebras \?\(_{4}\) and \?\(_{6}\), Proc. Nat. Acad. Sci. U. S. A. 36 (1950), 137 – 141. · Zbl 0037.02003
[58] A. M. Cohen and R. H. Cushman, Gröbner bases and standard monomial theory, Computational algebraic geometry (Nice, 1992) Progr. Math., vol. 109, Birkhäuser Boston, Boston, MA, 1993, pp. 41 – 60. · Zbl 0808.13010 · doi:10.1007/978-1-4612-2752-6_4
[59] Arjeh M. Cohen, Martin W. Liebeck, Jan Saxl, and Gary M. Seitz, The local maximal subgroups of exceptional groups of Lie type, finite and algebraic, Proc. London Math. Soc. (3) 64 (1992), no. 1, 21 – 48. · Zbl 0706.20037 · doi:10.1112/plms/s3-64.1.21
[60] Bruce Cooperstein, Subgroups of the group \?\(_{6}\)(\?) which are generated by root subgroups, J. Algebra 46 (1977), no. 2, 355 – 388. · Zbl 0394.20035 · doi:10.1016/0021-8693(77)90376-3
[61] Bruce N. Cooperstein, The geometry of root subgroups in exceptional groups. I, Geom. Dedicata 8 (1979), no. 3, 317 – 381. · Zbl 0443.20005 · doi:10.1007/BF00151515
[62] B. Cooperstein, Geometry of long root subgroups in groups of Lie type, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 243 – 248.
[63] Bruce N. Cooperstein, Subgroups of exceptional groups of Lie type generated by long root elements. I. Odd characteristic, J. Algebra 70 (1981), no. 1, 270 – 282. , https://doi.org/10.1016/0021-8693(81)90259-3 Bruce N. Cooperstein, Subgroups of exceptional groups of Lie type generated by long root elements. II. Characteristic two, J. Algebra 70 (1981), no. 1, 283 – 298. , https://doi.org/10.1016/0021-8693(81)90260-X Bruce N. Cooperstein, Subgroups of exceptional groups of Lie type generated by long root elements. I. Odd characteristic, J. Algebra 70 (1981), no. 1, 270 – 282. , https://doi.org/10.1016/0021-8693(81)90259-3 Bruce N. Cooperstein, Subgroups of exceptional groups of Lie type generated by long root elements. II. Characteristic two, J. Algebra 70 (1981), no. 1, 283 – 298. · Zbl 0463.20015 · doi:10.1016/0021-8693(81)90260-X
[64] Bruce N. Cooperstein, The geometry of root subgroups in exceptional groups. II, Geom. Dedicata 15 (1983), no. 1, 1 – 45. · Zbl 0536.20010 · doi:10.1007/BF00146964
[65] Hans Cuypers, Symplectic geometries, transvection groups, and modules, J. Combin. Theory Ser. A 65 (1994), no. 1, 39 – 59. · Zbl 0824.51003 · doi:10.1016/0097-3165(94)90036-1
[66] Hans Cuypers, The geometry of \?-transvection groups, J. Algebra 300 (2006), no. 2, 455 – 471. · Zbl 1109.51004 · doi:10.1016/j.jalgebra.2005.12.012
[67] Hans Cuypers and Anja Steinbach, Linear transvection groups and embedded polar spaces, Invent. Math. 137 (1999), no. 1, 169 – 198. · Zbl 0933.20036 · doi:10.1007/s002220050328
[68] Hans Cuypers and Anja Steinbach, Special linear groups generated by transvections and embedded projective spaces, J. London Math. Soc. (2) 64 (2001), no. 3, 576 – 594. · Zbl 1018.20041 · doi:10.1112/S0024610701002721
[69] D. I. Deriziotis and A. P. Fakiolas, The maximal tori in the finite Chevalley groups of type \?\(_{6}\), \?\(_{7}\) and \?\(_{8}\), Comm. Algebra 19 (1991), no. 3, 889 – 903. · Zbl 0755.20010 · doi:10.1080/00927879108824176
[70] Lino Di Martino and Nikolai Vavilov, (2,3)-generation of \?\?(\?,\?). I. Cases \?=5,6,7, Comm. Algebra 22 (1994), no. 4, 1321 – 1347. · Zbl 0805.20038 · doi:10.1080/00927879408824908
[71] Lino Di Martino and Nikolai Vavilov, (2,3)-generation of \?\?(\?,\?). II. Cases \?\ge 8, Comm. Algebra 24 (1996), no. 2, 487 – 515. · Zbl 0847.20043 · doi:10.1080/00927879608825582
[72] Peter B. Gilkey and Gary M. Seitz, Some representations of exceptional Lie algebras, Geom. Dedicata 25 (1988), no. 1-3, 407 – 416. Geometries and groups (Noordwijkerhout, 1986). · Zbl 0661.17005 · doi:10.1007/BF00191935
[73] William M. Kantor, Subgroups of classical groups generated by long root elements, Trans. Amer. Math. Soc. 248 (1979), no. 2, 347 – 379. · Zbl 0406.20040
[74] William M. Kantor, Generation of linear groups, The geometric vein, Springer, New York-Berlin, 1981, pp. 497 – 509.
[75] Shang Zhi Li, Irreducible subgroups of \?\?(\?,\?) generated by root subgroups, Geom. Dedicata 31 (1989), no. 1, 41 – 44. · Zbl 0674.20028 · doi:10.1007/BF00184158
[76] Martin W. Liebeck and Gary M. Seitz, Subgroups generated by root elements in groups of Lie type, Ann. of Math. (2) 139 (1994), no. 2, 293 – 361. · Zbl 0824.20041 · doi:10.2307/2946583
[77] Hideya Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. École Norm. Sup. (4) 2 (1969), 1 – 62 (French). · Zbl 0261.20025
[78] Ch. Parker and G. E. Röhrle, Miniscule representations, Preprint Univ. Bielefeld no. 72, 1993, pp. 1-12.
[79] Eugene Plotkin, Andrei Semenov, and Nikolai Vavilov, Visual basic representations: an atlas, Internat. J. Algebra Comput. 8 (1998), no. 1, 61 – 95. · Zbl 0957.17006 · doi:10.1142/S0218196798000053
[80] Gerhard E. Röhrle, On extraspecial parabolic subgroups, Linear algebraic groups and their representations (Los Angeles, CA, 1992) Contemp. Math., vol. 153, Amer. Math. Soc., Providence, RI, 1993, pp. 143 – 155. · Zbl 0832.20071 · doi:10.1090/conm/153/01310
[81] T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. · Zbl 0927.20024
[82] Tonny A. Springer and Ferdinand D. Veldkamp, Octonions, Jordan algebras and exceptional groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. · Zbl 1087.17001
[83] A. I. Steinbach, Untergruppen von klassischen Gruppen, die von Transvektionen oder Siegel-Transvektionen erzeugt werden, Ph.-D. Thesis, Univ. of Gießen, 1995. · Zbl 0858.20031
[84] A. I. Steinbach, Subgroups of classical groups generated by transvections or Siegel transvections I. Embeddings in linear groups, Geom. Dedicata 68 (1997), no. 3, 281 – 322. , https://doi.org/10.1023/A:1004996924764 A. I. Steinbach, Subgroups of classical groups generated by transvections or Siegel transvections. II. Embeddings in orthogonal groups, Geom. Dedicata 68 (1997), no. 3, 323 – 357. · Zbl 0891.20035 · doi:10.1023/A:1004944907926
[85] Anja Steinbach, Subgroups isomorphic to \?\(_{2}\)(\?) in orthogonal groups, J. Algebra 205 (1998), no. 1, 77 – 90. · Zbl 0914.20042 · doi:10.1006/jabr.1997.7375
[86] -, Groups of Lie type generated by long root elements in \( \mathrm F_4(K)\), Habilitationsschrift, Gießen, 2000.
[87] Anja Steinbach, Subgroups of the Chevalley groups of type \?\(_{4}\) arising from a polar space, Adv. Geom. 3 (2003), no. 1, 73 – 100. · Zbl 1048.20031 · doi:10.1515/advg.2003.007
[88] F. G. Timmesfeld, Groups generated by \?-transvections, Invent. Math. 100 (1990), no. 1, 167 – 206. · Zbl 0697.20018 · doi:10.1007/BF01231184
[89] F. G. Timmesfeld, Groups generated by \?-root subgroups, Invent. Math. 106 (1991), no. 3, 575 – 666. · Zbl 0794.20057 · doi:10.1007/BF01243925
[90] F. G. Timmesfeld, Groups generated by \?-root subgroups — a survey, Groups, combinatorics & geometry (Durham, 1990) London Math. Soc. Lecture Note Ser., vol. 165, Cambridge Univ. Press, Cambridge, 1992, pp. 183 – 204. · Zbl 0834.20030 · doi:10.1017/CBO9780511629259.018
[91] F. G. Timmesfeld, Moufang planes and the groups \?^{\?}\(_{6}\) and \?\?\(_{2}\)(\?), \? a Cayley division algebra, Forum Math. 6 (1994), no. 2, 209 – 231. · Zbl 0802.51003 · doi:10.1515/form.1994.6.209
[92] F. G. Timmesfeld, Subgroups generated by root-elements of groups generated by \?-root subgroups, Geom. Dedicata 49 (1994), no. 3, 293 – 321. · Zbl 0805.20036 · doi:10.1007/BF01264031
[93] F. G. Timmesfeld, Abstract root subgroups and quadratic action, Adv. Math. 142 (1999), no. 1, 1 – 150. With an appendix by A. E. Zalesskii. · Zbl 0934.20025 · doi:10.1006/aima.1998.1779
[94] Franz Georg Timmesfeld, Abstract root subgroups and simple groups of Lie type, Monographs in Mathematics, vol. 95, Birkhäuser Verlag, Basel, 2001. · Zbl 0984.20019
[95] J. Tits, Sur les constantes de structure et le théorème d’existence des algèbres de Lie semi-simples, Inst. Hautes Études Sci. Publ. Math. 31 (1966), 21 – 58 (French). · Zbl 0145.25804
[96] Jacques Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin-New York, 1974. · Zbl 0295.20047
[97] Nikolai A. Vavilov, Structure of Chevalley groups over commutative rings, Nonassociative algebras and related topics (Hiroshima, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 219 – 335. · Zbl 0799.20042
[98] Nikolai Vavilov, A third look at weight diagrams, Rend. Sem. Mat. Univ. Padova 104 (2000), 201 – 250. · Zbl 1016.20029
[99] N. A. Vavilov, Do it yourself structure constants for Lie algebras of types \?_{\?}, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 281 (2001), no. Vopr. Teor. Predst. Algebr. i Grupp. 8, 60 – 104, 281 (English, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 120 (2004), no. 4, 1513 – 1548. · Zbl 1062.17004 · doi:10.1023/B:JOTH.0000017882.04464.97
[100] Nikolai Vavilov, An \?\(_{3}\)-proof of structure theorems for Chevalley groups of types \?\(_{6}\) and \?\(_{7}\), Internat. J. Algebra Comput. 17 (2007), no. 5-6, 1283 – 1298. · Zbl 1172.20034 · doi:10.1142/S0218196707003998
[101] Nikolai Vavilov and Eugene Plotkin, Chevalley groups over commutative rings. I. Elementary calculations, Acta Appl. Math. 45 (1996), no. 1, 73 – 113. · Zbl 0861.20044 · doi:10.1007/BF00047884
[102] Ascher Wagner, Groups generated by elations, Abh. Math. Sem. Univ. Hamburg 41 (1974), 190 – 205. · Zbl 0288.20060 · doi:10.1007/BF02993513
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.