Weyl- and Horn-type inequalities for cyclically compact operators. (English) Zbl 1424.47096

Summary: A variant of Weyl- and Horn-type inequalities for cyclically compact operators on Kaplansky-Hilbert modules is given.


47B60 Linear operators on ordered spaces
47B06 Riesz operators; eigenvalue distributions; approximation numbers, \(s\)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators
47B07 Linear operators defined by compactness properties
15A42 Inequalities involving eigenvalues and eigenvectors
46B99 Normed linear spaces and Banach spaces; Banach lattices
46A19 Other “topological” linear spaces (convergence spaces, ranked spaces, spaces with a metric taking values in an ordered structure more general than \(\mathbb{R}\), etc.)
46L08 \(C^*\)-modules
47B38 Linear operators on function spaces (general)
Full Text: DOI


[1] Garling DJH. Inequalities: A Journey into Linear Analysis. Cambridge, UK: Cambridge University Press, 2007. · Zbl 1135.26014
[2] G¨on¨ull¨u U. Schatten type classes of operators on Kaplansky–Hilbert modules. In: Korobe˘ınik YuF, Kusraev AG, editors. Studies in Mathematical Analysis, VSC RAS; 14–20 July 2013; Vladikavkaz, Russia. 2014, pp. 227-238.
[3] G¨on¨ull¨u U. Trace class and Lidski˘ı trace formula in Kaplansky–Hilbert modules. Vladikavkaz Math J 2014; 16: 29-37. · Zbl 1359.47034
[4] G¨on¨ull¨u U. The Rayleigh–Ritz minimax formula in Kaplansky–Hilbert modules. Positivity 2015; 19: 347-354. · Zbl 1390.47007
[5] G¨on¨ull¨u U. A representation of cyclically compact operators on Kaplansky–Hilbert modules. Arch Math 2016; 106: 41-51. · Zbl 1387.47014
[6] Horn A. On the singular values of a product of completely continuous operators. P Natl Acad Sci USA 1950; 36: 374-375. · Zbl 0038.07201
[7] Kaplansky I. Modules over operator algebras. Am J Math 1953; 75: 839-858. · Zbl 0051.09101
[8] Kudaybergenov K, Mukhamedov F. Spectral decomposition of self-adjoint cyclically compact operators and partial integral equations. Acta Math Hung 2016; 149: 297-305. · Zbl 1399.47074
[9] Kusraev AG. Boolean valued analysis of duality between universally complete modules. Dokl Akad Nauk SSSR 1982; 267: 1049-1052.
[10] Kusraev AG. Vector Duality and Its Applications. Novosibirsk, USSR: Nauka, 1985.
[11] Kusraev AG. Cyclically compact operators in Banach spaces. Vladikavkaz Math J 2000; 2: 10-23. · Zbl 1030.47052
[12] Kusraev AG. Dominated Operators. Dordrecht, the Netherlands: Kluwer Academic Publishers, 2000.
[13] Weyl H. Inequalities between two kinds of eigenvalues of a linear transformation. P Natl Acad Sci USA 1949; 35: 408-411. · Zbl 0032.38701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.