Certain properties of generalized analytic functions from Smirnov class with a variable exponent. (English) Zbl 1369.30071

Summary: Let \(D\) be a simply connected domain bounded by a simple, closed, rectifiable curve \(\Gamma\), let \(p=p(t)\) be a positive measurable function given on \(\Gamma\), and \(z=z(\zeta)\), \(\zeta=re^{i\vartheta}\) be a conformal mapping of the circle \(U=\{\zeta: |\zeta|<1\}\) onto the domain \(D\).
The function \(W(z)\), generalized-analytical in I. Vekua’s sense, belongs to the Smirnov class \(E^{p(t)}(A;B;D)\), if
\(W\in U^{s,2}(A;B;D)\);
\(\sup\limits_{0<r<1} \int\limits_0^{2\pi}|W(z(re^{i\vartheta}))|^{p(z(e^{i\vartheta}))}|z\prime(re^{i\vartheta})|\,d\vartheta<\infty\) (see [V. Paatashvili, Proc. A. Razmadze Math. Inst. 163, 93–110 (2013; Zbl 1346.30022)]).
When \(p(t)\) is Log-Hölder function continuous in \(\Gamma\) and \(\min p(t)=\underline{p}>1\), we considers the problems of representability of functions from \(E^{p(t)}(A;B;D)\) by the generalized Cauchy integral, show the connection between the generalized Cauchy type integral and the generalized singular integral; of special interest is the question of extendability of functions from those classes, and the symmetry principle is proved.


30H15 Nevanlinna spaces and Smirnov spaces


Zbl 1346.30022
Full Text: Link


[1] N. Danford and T. Shvartz, Linear operators. Part I: General theory. (Russian) Izdat. Inostran. Lit., Moscow, 1962.
[2] P. L. Duren, Theory of Hpspaces. Pure and Applied Mathematics, Vol. 38. Academic Press, New York–London, 1970.
[3] G. M. Goluzin, Geometric theory of functions of a complex variable. (Russian) Nauka, Moscow, 1966. · Zbl 0148.30603
[4] S. B. Klimentov, The Riemann–Hilbert problem for generalized analytic functions in Smirnov classes. (Russian) Vladikavkaz. Mat. Zh. 14 (2012), no. 3, 63–73. · Zbl 1326.30034
[5] V. Kokilashvili and V. Paatashvili, On Hardy classes of analytic functions with a variable exponent. Proc. A. Razmadze Math. Inst. 142 (2006), 134–137. · Zbl 1126.47031
[6] V. Kokilashvili and V. Paatashvili, On variable Hardy and Smirnov classes of analytic functions. Georgian Internat. J. Sci., Nova Sci. Publ., Inc 1 (2008), 67–81. · Zbl 1259.30029
[7] V. Kokilashvili and V. Paatashvili, Boundary value problems for analytic and harmonic functions in nonstandard Banach function spaces. Nova Science Publishers, New York, NY, 2012. · Zbl 1260.30001
[8] V. Kokilashvili and V. Paatashvili, The Riemann boundary value problem in variable exponent Smirnov class of generalized analytic functions. Proc. A. Razmadze Math. Inst. 169 (2015), 105–118. · Zbl 1353.30045
[9] V. Kokilashvili and S. Samko, Vekua’s generalized singular integral on Carleson curves in weighted variable Lebesgue spaces. Operator algebras, operator theory and applications, 283–293, Oper. Theory Adv. Appl., 181, Birkhäuser Verlag, Basel, 2008. 10. P. Koosis, Introduction to Hpspaces. With an appendix on Wolff’s proof of the corona theorem. London Mathematical Society Lecture Note Series, 40. Cambridge University Press, Cambridge–New York, 1980. 11. G. F. Manjavidze, Boundary value problems for conjugation with shift for analytic and generalized analytic functions. (Russian) Tbilis. Gos. Univ., Tbilisi, 1990. 12. G. Manjavidze and G. Akhalaia, Boundary value problems of the theory of generalized analytic vectors. Complex methods for partial differential equations (Ankara, 1998), 57–95, Int. Soc. Anal. Appl. Comput., 6, Kluwer Acad. Publ., Dordrecht, 1999. 13. K. M. Musaev, Some boundary properties of generalized analytic functions. (Russian) Dokl. Akad. Nauk SSSR 181 (1968), 1335–1338. 14. K. M. Musaev and T. Kh. Gasanova, Riemann boundary value problem in a class of generalized analytic functions. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 22 (2005), 93–98. 15. V. Paatashvili, Variable exponent Smirnov classes of generalized analytic functions. Proc. A. Razmadze Math. Inst. 163 (2013), 93–110. 16. I. I. Privalov, Boundary properties of analytic functions. (Russian) Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow–Leningrad, 1950. 17. I. N. Vekua, Generalized analytic functions. (Russian) Fizmatgiz, Moscow, 1958.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.