A unified approach to dynamic Hardy-type and Copson-type inequalities. (English) Zbl 1482.26041

The authors obtain some dynamic Hardy-type and Copson-type inequalities on time scales. Their main results relay on the Hölder inequality, the variant of the Fubini theorem and the power rules of integration on time scales. These results extent the known ones from the references.


26D15 Inequalities for sums, series and integrals
34A40 Differential inequalities involving functions of a single real variable
34N05 Dynamic equations on time scales or measure chains
Full Text: DOI


[1] Agarwal, R. P.; O’Regan, D.; Saker, S. H., Hardy Type Inequalities on Time Scales (2016), Springer · Zbl 1359.26002
[2] Beesack, P. R., On Some Integral Inequalities of E.T. Copson, General Inequalities 2, 151-159 (1980), Birkhäuser: Birkhäuser Basel
[3] Bibi, R.; Bohner, M.; Pečarić, J.; Varošanec, S., Minkowski and Beckenbach-Dresher inequalities and functional on time scales, J. Math. Inequal., 7, 299-312 (2013) · Zbl 1277.26033
[4] Bohner, M.; Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (2001), Birkhäuser: Birkhäuser Boston, Mass, USA · Zbl 0978.39001
[5] Bohner, M.; Georgiev, S. G., Multiple Integration on Time Scales: Multivariable Dynamic Calculus on Time Scales, 449-515 (2016), Springer: Springer Cham
[6] Bohner, M.; Peterson, A., Advances in Dynamic Equations on Time Scales (2003), Birkhäuser: Birkhäuser Boston · Zbl 1025.34001
[7] Carley, H.; Johnson, P. D.; Mohapatra, R. N., Unifying inequalities of Hardy, Copson, and others, Aequ. Math., 89, 497-510 (2015) · Zbl 1320.26020
[8] Chan, L. Y., Some extensions of Hardy’s inequality, Can. Math. Bull., 22, 2, 165-169 (1979) · Zbl 0409.26007
[9] Copson, E. T., Note on series of positive terms, J. Lond. Math. Soc., 3, 49-51 (1928) · JFM 54.0227.01
[10] Copson, E. T., Some integral inequalities, Proc. R. Soc. Edinb. A, 75, 157-164 (1976) · Zbl 0331.26015
[11] Dubinskii, Yu. A., A Hardy-type inequality and its applications, Tr. Mat. Inst. Steklova, 269, 112-132 (2010) · Zbl 1222.26027
[12] Hardy, G. H., Notes on a theorem of Hilbert, Math. Z., 6, 314-317 (1920) · JFM 47.0207.01
[13] Hardy, G. H., Notes on some points in the integral calculus (LX). An inequality between integrals, Messenger Math., 54, 150-156 (1925)
[14] Hardy, G. H., Notes on some points in the integral calculus (LXIV), Messenger Math., 57, 12-16 (1928)
[15] Hardy, G. H.; Littlewood, J. E.; Polya, G., Inequalities (1952), Cambridge Univ. Press · Zbl 0047.05302
[16] Kufner, A.; Persson, L. E., Weighted Inequalities of Hardy Type (2003), World Scientific Publishing Co.: World Scientific Publishing Co. Singapore/New Jersy/London/Hong Kong · Zbl 1065.26018
[17] Kufner, A.; Maligranda, L.; Persson, L. E., The Hardy Inequalities: About Its History and Some Related Results (2007), Vydavatelski Servis Publishing House: Vydavatelski Servis Publishing House Pilsen · Zbl 1213.42001
[18] Kumar, M.; Mohapatra, R. N., Application of Davies-Petersen lemma, (Differential and Integral Inequalities (2019), Springer: Springer Cham), 549-568 · Zbl 1441.26020
[19] Leindler, L., Generalization of inequalities of Hardy and Littlewood, Acta Sci. Math., 31, 279-285 (1970) · Zbl 0203.06103
[20] Levinson, N., Generalizations of an inequality of Hardy, Duke Math. J., 31, 389-394 (1964) · Zbl 0126.28101
[21] Nasibullin, R. G., On a discrete Hardy type inequality with logarithmic weight, Vladikavkaz. Mat. Zh., 18, 2, 67-75 (2016) · Zbl 1445.26019
[22] Opic, B.; Kufner, A., Hardy-Type Inequalities, Pitman Research Notes in Mathematics Series (1990), Longman Scientific & Technical: Longman Scientific & Technical Harlow · Zbl 0698.26007
[23] Pachpatte, B. G., A note on certain inequalities related to Hardy’s inequality, Indian J. Pure Appl. Math., 23, 773-776 (1992) · Zbl 0766.26015
[24] Řehák, P., Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl., 5, 495-507 (2005) · Zbl 1107.26015
[25] Saker, S. H.; Mahmoud, R. R.; Peterson, A., Weighted Hardy-type inequalities on time scales with applications, Mediterr. J. Math., 13, 2, 585-606 (2016) · Zbl 1342.26064
[26] Saker, S. H.; O’Regan, D., Extensions of dynamic inequalities of Hardy’s type on time scales, Math. Slovaca, 65, 5, 993-1012 (2015) · Zbl 1363.26028
[27] Saker, S. H.; O’Regan, D.; Agarwal, R. P., Generalized Hardy, Copson, Leindler and Bennett inequalities on time scales, Math. Nachr., 287, 5-6, 686-698 (2014) · Zbl 1309.26018
[28] Saker, S. H.; O’Regan, D., Hardy’s type integral inequalities on time scales, Appl. Math. Inf. Sci., 9, 6, 2955-2962 (2015)
[29] Saker, S. H.; O’Regan, D.; Agarwal, R. P., Dynamic inequalities of Hardy and Copson type on time scales, Analysis, 34, 4, 391-402 (2014) · Zbl 1300.26022
[30] Saker, S. H.; Osman, M. M.; O’Regan, D.; Agarwal, R. P., Levinson type inequalitis and their extensions via convexity on time scales, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 113, 1, 299-314 (2019) · Zbl 1409.26016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.