×

Zeros of entire functions and related systems of infinitely many nonlinearly coupled evolution equations. (English. Russian original) Zbl 1403.30009

Theor. Math. Phys. 196, No. 2, 1111-1128 (2018); translation from Teor. Mat. Fiz. 196, No. 2, 193-214 (2018).
Summary: Recent findings concerning the zeros of generic polynomials are extended to entire functions featuring infinitely many distinct zeros, and related systems of infinitely many nonlinearly coupled evolution ODEs and PDEs are identified, the solutions of which display interesting properties.

MSC:

30D15 Special classes of entire functions of one complex variable and growth estimates
30C15 Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral)
34G20 Nonlinear differential equations in abstract spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Calogero, F., New solvable variants of the goldfish many-body problem, Stud. Appl. Math., 137, 123-139, (2016) · Zbl 1373.70008 · doi:10.1111/sapm.12096
[2] Bihun, O.; Calogero, F., A new solvable many-body problem of goldfish type, J. Nonlinear Math. Phys., 23, 28-46, (2016) · doi:10.1080/14029251.2016.1135638
[3] “Novel solvable many-body problems,” J. Nonlinear Math. Phys., 23, 190-212 (2016)
[4] “Generations of monic polynomials such that the coefficients of each polynomials of the next generation coincide with the zeros of polynomial of the current generation, and new solvable many-body problems,” Lett. Math. Phys., 106, 1011-1031 (2016) · Zbl 1372.70037
[5] “Generations of solvable discrete-time dynamical systems,” J. Math. Phys., 58, 052701 (2017). · Zbl 1373.37136
[6] Calogero, F., A solvable N-body problem of goldfish type featuring N2 arbitrary coupling constants, J. Nonlinear Math. Phys., 23, 300-305, (2016) · doi:10.1080/14029251.2016.1175823
[7] “Three new classes of solvable N-body problems of goldfish type with many arbitrary coupling constants,” Symmetry, 8, 53 (2016).
[8] “Novel isochronous N-body problems featuring N arbitrary rational coupling constants,” J. Math. Phys., 57, 072901 (2016). · Zbl 1403.70005
[9] “Yet another class of new solvable N-body problems of goldfish type,” Qual. Theory Dyn. Syst., 16, 561-577 (2017) · Zbl 1421.70020
[10] “New solvable dynamical systems,” J. Nonlinear Math. Phys., 23, 486-493 (2016)
[11] “Integrable Hamiltonian N-body problems in the plane featuring N arbitrary functions,” J. Nonlinear Math. Phys., 24, 1-6 (2017)
[12] “New C-integrable and S-integrable systems of nonlinear partial differential equations,” J. Nonlinear Math. Phys., 24, 142-148 (2017)
[13] M, B.; F, C., A convenient expression of the time-derivative z(k) n (t), of arbitrary order k, of the zero zn(t) of a time-dependent polynomial pn(z; t) of arbitrary degree N in z, and solvable dynamical systems, J. Nonlinear Math. Phys., 23, 474-485, (2016) · doi:10.1080/14029251.2016.1237197
[14] F. Calogero, Zeros of Polynomials and Solvable Nonlinear Evolution Equations, Cambridge Univ. Press, Cambridge (2018). · Zbl 1496.37058
[15] Calogero, F., Nonlinear differential algorithm to compute all the zeros of a generic polynomial, J. Math. Phys., 57, 083508, (2016) · Zbl 1348.65084 · doi:10.1063/1.4960821
[16] Calogero, F., Novel differential algorithm to evaluate all the zeros of any generic polynomial, J. Nonlinear Math. Phys., 24, 469-472, (2017) · doi:10.1080/14029251.2017.1375685
[17] H. Davenport, Multiplicative Number Theory (Lect. Adv. Math., Vol. 1), Markham, Chicago (1967). · Zbl 0159.06303
[18] Calogero, F., The neatest many-body problem amenable to exact treatments (a ‘goldfish’ ?), 78-84, (2001) · Zbl 0990.70010
[19] Calogero, F., Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations, and related ‘solvable’ many body problems, Nuovo Cimento B, 43, 177-241, (1978) · doi:10.1007/BF02721013
[20] F. Calogero, Isochronous Systems, Oxford Univ. Press, Oxford (2012). · Zbl 1091.34023
[21] Calogero, F.; Gómez-Ullate, D., Asymptotically isochronous systems, J. Nonlinear Math. Phys., 15, 410-426, (2008) · Zbl 1161.70010 · doi:10.2991/jnmp.2008.15.4.5
[22] Gómez-Ullate, D.; Sommacal, M., Periods of the goldfish many-body problem, J. Nonlinear Math. Phys., 12, Supp., 1, 351-362, (2005) · doi:10.2991/jnmp.2005.12.s1.28
[23] Martínez Alonso, E.; Shabat, A. B., Energy-dependent potentials revisited: A universal hierarchy of hydrodynamic type, Phys. Lett. A, 300, 58-64, (2002) · Zbl 0997.37045 · doi:10.1016/S0375-9601(02)00703-X
[24] Adler, V. E.; Shabat, A. B., Model equation of the theory of solitons, Theor. Math. Phys., 153, 1373-1387, (2007) · Zbl 1138.37044 · doi:10.1007/s11232-007-0121-1
[25] Shabat, A. B., Symmetric polynomials and conservation laws [in russian], Vladikavkaz. Mat. Zh., 4, 83-94, (2012) · Zbl 1326.37039
[26] Gallavotti, G.; Marchioro, C., On the calculation of an integral, J. Math. Anal. Appl., 44, 661-675, (1973) · Zbl 0275.47029 · doi:10.1016/0022-247X(73)90008-5
[27] E. Bombieri, Problems of the Millennium: The Riemann Hypothesis, Clay Mathematics Institute, Cambridge, Mass. (2000).
[28] H. M. Edwards, Riemann’s Zeta Function (Pure Appl. Math., Vol. 58), Acad. Press, New York (1974). · Zbl 0315.10035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.