## Several quantitative characterizations of some specific groups.(English)Zbl 1424.20028

Summary: Let $$G$$ be a finite group and let $$\pi(G)=\{p_1,p_2,\dots,p_k\}$$ be the set of prime divisors of $$|G|$$ for which $$p_1<p_2<\cdots <p_k$$. The Gruenberg-Kegel graph of $$G$$, denoted $$\operatorname{GK}(G)$$, is defined as follows: its vertex set is $$\pi(G)$$ and two different vertices $$p_i$$ and $$p_j$$ are adjacent by an edge if and only if $$G$$ contains an element of order $$p_i p_j$$. The degree of a vertex $$p_i$$ in $$\text{GK}(G)$$ is denoted by $$d_G(p_i)$$ and the $$k$$-tuple $$D(G)=(d_G(p_1),d_G(p_2),\dots,d_G(p_k))$$ is said to be the degree pattern of $$G$$. Moreover, if $$\omega\subseteq\pi(G)$$ is the vertex set of a connected component of $$\text{GK}(G)$$, then the largest $$\omega$$-number which divides $$|G|$$, is said to be an order component of $$\text{GK}(G)$$. We will say that the problem of OD-characterization is solved for a finite group if we find the number of pairwise non-isomorphic finite groups with the same order and degree pattern as the group under study. The purpose of this article is twofold. First, we completely solve the problem of OD-characterization for every finite non-abelian simple group with orders having prime divisors at most 29. In particular, we show that there are exactly two non-isomorphic finite groups with the same order and degree pattern as $$U_4(2)$$. Second, we prove that there are exactly two non-isomorphic finite groups with the same order components as $$U_5(2)$$.

### MSC:

 20D60 Arithmetic and combinatorial problems involving abstract finite groups 20D05 Finite simple groups and their classification 05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
Full Text:

### References:

 [1] Akbari B.; Moghaddamfar A. R., Recognizing by order and degree pattern of some projective special linear groups, Internat. J. Algebra Comput. 22 (2012), no. 6, 1250051, 22 pages · Zbl 1266.20037 · doi:10.1142/S0218196712500518 [2] Akbari B.; Moghaddamfar A. R., On recognition by order and degree pattern of finite simple groups, Southeast Asian Bull. Math. 39 (2015), no. 2, 163-172 · Zbl 1340.20031 [3] Akbari B.; Moghaddamfar A. R., OD-characterization of certain four dimensional linear groups with related results concerning degree patterns, Front. Math. China 10 (2015), no. 1, 1-31 · Zbl 1321.20024 · doi:10.1007/s11464-014-0430-2 [4] Akbari B.; Moghaddamfar A. R., Simple groups which are $$2$$-fold OD-characterizable, Bull. Malays. Math. Sci. Soc. 35 (2012), no. 1, 65-77 · Zbl 1241.20020 [5] Akbari M.; Moghaddamfar A. R.; Rahbariyan S., A characterization of some finite simple groups through their orders and degree patterns, Algebra Colloq. 19 (2012), no. 3, 473-482 · Zbl 1250.20010 · doi:10.1142/S1005386712000338 [6] Alavi S. H.; Daneshkhah A., A new characterization of alternating and symmetric groups, J. Appl. Math. Comput. 17 (2005), no. 1-2, 245-258 · Zbl 1066.20012 · doi:10.1007/BF02936052 [7] Chen G. Y., A new characterization of sporadic simple groups, Algebra Colloq. 3 (1996), no. 1, 49-58 · Zbl 1332.20012 [8] Conway J. H.; Curtis R. T.; Norton S. P.; Parker R. A.; Wilson R. A., Atlas of Finite Groups, Clarendon Press, Oxford, 1985 · Zbl 0568.20001 [9] Hoseini A. A.; Moghaddamfar A. R., Recognizing alternating groups $$A_{p+3}$$ for certain primes $$p$$ by their orders and degree patterns, Front. Math. China 5 (2010), no. 3, 541-553 · Zbl 1205.20029 · doi:10.1007/s11464-010-0011-y [10] Iranmanesh A.; Alavi S. H.; Khosravi B., A characterization of $$PSL(3,q)$$ where $$q$$ is an odd prime power, J. Pure Appl. Algebra 170 (2002), no. 2-3, 243-254 · Zbl 1001.20005 · doi:10.1016/S0022-4049(01)00113-X [11] Iranmanesh A.; Khosravi B., A characterization of $$C_2 (q)$$ where $$q>5$$, Comment. Math. Univ. Carolin. 43 (2002), no. 1, 9-21 · Zbl 1068.20020 [12] Khosravi A.; Khosravi B., $$r$$-recognizability of $$B_n(q)$$ and $$C_n(q)$$ where $$n=2^m\geqslant 4$$, J. Pure Appl. Algebra 199 (2005), no. 1-3, 149-165 · Zbl 1076.20008 [13] Khosravi B., Some characterizations of $$L_9 (2)$$ related to its prime graph, Publ. Math. Debrecen 75 (2009), no. 3-4, 375-385 · Zbl 1207.20008 [14] Khosravi Beh.; Khosravi Bah., A characterization of $${\sp 2E}_6 (q)$$, Kumamoto J. Math. 16 (2003), 1-11 · Zbl 1046.20015 [15] Kogani-Moghaddam R.; Moghaddamfar A. R., Groups with the same order and degree pattern, Sci. China Math. 55 (2012), no. 4, 701-720 · Zbl 1252.20010 · doi:10.1007/s11425-011-4314-6 [16] Kondrat’ev A. S., On prime graph components of finite simple groups, Math. Sb. 180 (1989), no. 6, 787-797 · Zbl 0691.20013 [17] Lucido M. S.; Moghaddamfar A. R., Groups with complete prime graph connected components, J. Group Theory 7 (2004), no. 3, 373-384 · Zbl 1058.20014 · doi:10.1515/jgth.2004.013 [18] Mazurov V. D., Recognition of the finite simple groups $$S_4 (q)$$ by their element orders, Algebra Logic 41 (2002), no. 2, 93-110 · Zbl 1067.20016 · doi:10.1023/A:1015356614025 [19] Mazurov V. D.; Chen G. Y., Recognizability of the finite simple groups $$L_4(2^m)$$ and $$U\sb 4(2\sp m)$$ by the spectrum, Algebra Logic 47 (2008), no. 1, 49-55 · Zbl 1155.20023 · doi:10.1007/s10469-008-0005-y [20] Moghaddamfar A. R., A comparison of the order components in Frobenius and $$2$$-Frobenius groups with finite simple groups, Taiwanese J. Math. 13 (2009), no. 1, 67-89 · Zbl 1230.20013 [21] Moghaddamfar A. R., Recognizability of finite groups by order and degree pattern, Proceedings of the International Conference on Algebra 2010, World Sci. Publ., Hackensack, NJ, 2012, pp. 422-433 · Zbl 1264.20028 [22] Moghaddamfar A. R., On alternating and symmetric groups which are quasi OD-characterizable, J. Algebra Appl., 16 (2017), no. 2, 1750065, 14 pp · Zbl 1431.20012 [23] Moghaddamfar A. R.; Darafsheh M. R., A family of finite simple groups which are $$2$$-recognizable by their elements order, Comm. Algebra 32 (2004), no. 11, 4507-4513 · Zbl 1071.20019 · doi:10.1081/AGB-200037717 [24] Moghaddamfar A. R.; Rahbarian S., More on the OD-characterizability of a finite group, Algebra Colloq. 18 (2011), 663-674 · Zbl 1235.20017 [25] Moghaddamfar A. R.; Rahbariyan S., A quantitative characterization of some finite simple groups through order and degree pattern, Note Mat. 34 (2014), no. 2, 91-105 · Zbl 1316.20024 [26] Moghaddamfar A. R.; Rahbarian S., OD-characterization of some projective special linear groups over the binary field and their automorphism groups, Comm. Algebra 43 (2015), no. 6, 2308-2334 · Zbl 1326.20024 · doi:10.1080/00927872.2014.891605 [27] Moghaddamfar A. R.; Zokayi A. R., Recognizing finite group through order and degree pattern, Algebra Colloq. 15 (2008), no. 3, 449-456 · Zbl 1157.20015 · doi:10.1142/S1005386708000424 [28] Moghaddamfar A. R.; Zokayi A. R., OD-characterization of alternating and symmetric groups of degree $$16$$ and $$22$$, Front. Math. China 4 (2009), 669-680 · Zbl 1207.20012 · doi:10.1007/s11464-009-0037-1 [29] Moghaddamfar A. R.; Zokayi A. R., OD-characterization of certain finite groups having connected prime graphs, Algebra Colloq. 17 (2010), no. 1, 121-130 · Zbl 1191.20020 · doi:10.1142/S1005386710000143 [30] Moghaddamfar A. R.; Zokayi A. R.; Darafsheh M. R., A characterization of finite simple groups by the degrees of vertices of their prime graphs, Algebra Colloq. 12 (2005), no. 3, 431-442 · Zbl 1072.20015 · doi:10.1142/S1005386705000398 [31] Shao C.; Shi W.; Wang L.; Zhang L., OD-characterization of $$\mathbb A_{16}$$, Journal of Suzhou University (Natural Science Edition) 24 (2008), 7-10 [32] Shao C.; Shi W.; Wang L.; Zhang L., OD-characterization of the simple group $$L_3(9)$$, Journal of Guangxi University (Natural Science Edition) 34 (2009), 120-122 · Zbl 1212.20054 [33] Shi W.; Zhang L., OD-characterization of all simple groups whose orders are less than $$10^8$$, Front. Math. China 3 (2008), 461-474 · Zbl 1165.20010 · doi:10.1007/s11464-008-0026-9 [34] Suzuki M., Group Theory I, Springer, Berlin-New York, 1982 · Zbl 0472.20001 [35] Vasil’ev A. V.; Gorshkov I. B., On the recognition of finite simple groups with a connected prime graph, Sib. Math. J. 50 (2009), 233-238 · Zbl 1212.20052 · doi:10.1007/s11202-009-0027-2 [36] Williams J. S., Prime graph components of finite groups, J. Algebra 69 (1981), no. 2, 487-513 · Zbl 0471.20013 · doi:10.1016/0021-8693(81)90218-0 [37] Yan Y.; Chen G. Y., OD-characterization of alternating and symmetric groups of degree $$106$$ and $$112$$, Proceedings of the International Conference on Algebra 2010, World Sci. Publ., Hackensack, NJ, 2012, pp. 690-696 · Zbl 1263.20013 [38] Yan Y.; Chen G. Y.; Zhang L. C.; Xu H., Recognizing finite groups through order and degree patterns, Chin. Ann. Math. Ser. B 34 (2013), no. 5, 777-790 · Zbl 1279.20036 · doi:10.1007/s11401-013-0787-7 [39] Zavarnitsine A. V., Exceptional action of the simple groups $$L_4 (q)$$ in the defining characteristic, Sib. Elektron. Mat. Izv. 5 (2008), 68-74 · Zbl 1289.20059 [40] Zavarnitsine A. V., Finite simple groups with narrow prime spectrum, Sib. Elektron. Mat. Izv. 6 (2009), 1-12 · Zbl 1289.20021 [41] Zhang L.; Shi W., OD-characterization of simple $$K_4$$-groups, Algebra Colloq. 16 (2009), 275-282 · Zbl 1182.20013 · doi:10.1142/S1005386709000273 [42] Zhang L.; Shi W., OD-characterization of almost simple groups related to $$U\sb 6(2)$$, Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 2, 441-450 · Zbl 1240.20036 [43] Zhang L.; Shi W., OD-characterization of the projective special linear groups $$L_2(q)$$, Algebra Colloq. 19 (2012), no. 3, 509-524 · Zbl 1257.20012 [44] Zinov’eva M. R.; Kondrat’ev A. S., An example of a double Frobenius group with order components as in the simple group $$S_4 (3)$$, Vladikavkaz. Mat. Zh. 10 (2008), no. 1, 35-36 (Russian) · Zbl 1324.20008 [45] Zinov’eva M. R.; Mazurov V. D., On finite groups with disconnected prime graph, Proceedings of the Steklov Institute of Mathematics 283 (2013), no. 1, 139-145 · Zbl 1307.20023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.