Hashinaga, Takahiro; Tamaru, Hiroshi; Terada, Kazuhiro Milnor-type theorems for left-invariant Riemannian metrics on Lie groups. (English) Zbl 1353.53058 J. Math. Soc. Japan 68, No. 2, 669-684 (2016). The authors prove the existence of special left-invariant orthonormal frames for left-invariant Riemannian metrics on Lie groups. This means that the bracket relations among them can be written with a relatively smaller number of parameters. This result could be considered as a generalization of well-known results of J. W. Milnor on 3-dimensional unimodular Lie groups [Adv. Math. 21, 293–329 (1976; Zbl 0341.53030)]. The main tool is based on the structure of the moduli space of left-invariant Riemannian metrics. The authors consider some explicit examples of such frames and some applications. Reviewer: Yurii G. Nikonorov (Volgodonsk) Cited in 5 Documents MSC: 53C30 Differential geometry of homogeneous manifolds 53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.) Keywords:Lie groups; left-invariant Riemannian metrics; Milnor frames; Milnor-type theorems; Ricci signatures; solvsolitons Citations:Zbl 0341.53030 PDF BibTeX XML Cite \textit{T. Hashinaga} et al., J. Math. Soc. Japan 68, No. 2, 669--684 (2016; Zbl 1353.53058) Full Text: DOI arXiv Euclid OpenURL References: [1] M. S. Chebarikov, On the Ricci curvature of three-dimensional metric Lie algebras (Russian), Vladikavkaz. Mat. Zh., 16 (2014), 57-67. · Zbl 1332.53067 [2] B. Chow and D. Knopf, The Ricci flow: an introduction, Mathematical Surveys and Monographs, 110 , American Mathematical Society, Providence, RI, 2004. · Zbl 1086.53085 [3] K. Y. Ha and J. B. Lee, Left invariant metrics and curvatures on simply connected three-dimensional Lie groups, Math. Nachr., 282 (2009), 868-898. · Zbl 1172.22006 [4] T. Hashinaga and H. Tamaru, Three-dimensional solvsolitons and the minimality of the corresponding submanifolds, preprint, arXiv: arXiv: arXiv:1501.0551 · Zbl 1378.53057 [5] J. Heber, Noncompact homogeneous Einstein spaces, Invent. Math., 133 (1998), 279-352. · Zbl 0906.53032 [6] M. Jablonski, Concerning the existence of Einstein and Ricci soliton metrics on solvable Lie groups, Geom. Topol., 15 (2011), 735-764. · Zbl 1217.22005 [7] H. Kodama, A. Takahara and H. Tamaru, The space of left-invariant metrics on a Lie group up to isometry and scaling, Manuscripta Math., 135 (2011), 229-243. · Zbl 1230.53048 [8] A. G. Kremlev and Yu. G. Nikonorov, The signature of the Ricci curvature of left-invariant Riemannian metrics on four-dimensional Lie groups, The unimodular case, Siberian Adv. Math., 19 (2009), 245-267. · Zbl 1249.53065 [9] A. G. Kremlev and Yu. G. Nikonorov, The signature of the Ricci curvature of left-invariant Riemannian metrics on four-dimensional Lie groups, The nonunimodular case, Siberian Adv. Math., 20 (2010), 1-57. · Zbl 1249.53066 [10] J. Lauret, Einstein solvmanifolds and nilsolitons, New developments in Lie theory and geometry, 1-35, Contemp. Math., 491 , Amer. Math. Soc., Providence, RI, 2009. · Zbl 1186.53058 [11] J. Lauret, Ricci soliton solvmanifolds, J. Reine Angew. Math., 650 (2011), 1-21. [12] J. Lauret and C. Will, Einstein solvmanifolds: existence and non-existence questions, Math. Ann., 350 (2011), 199-225. · Zbl 1222.53048 [13] J. Lauret and C. Will, On the diagonalization of the Ricci flow on Lie groups, Proc. Amer. Math. Soc., 141 (2013), 3651-3663. · Zbl 1279.53065 [14] J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math., 21 (1976), 293-329. · Zbl 0341.53030 [15] T. Payne, The Ricci flow for nilmanifolds, J. Mod. Dyn., 4 (2010), 65-90. · Zbl 1206.53074 [16] H. Tamaru, A class of noncompact homogeneous Einstein manifolds, Differential geometry and its applications, 119-127, Matfyzpress, Prague, 2005. · Zbl 1112.53035 [17] H. Tamaru, Noncompact homogeneous Einstein manifolds attached to graded Lie algebras, Math. Z., 259 (2008), 171-186. · Zbl 1151.53044 [18] H. Tamaru, Parabolic subgroups of semisimple Lie groups and Einstein solvmanifolds, Math. Ann., 351 (2011), 51-66. · Zbl 1227.53062 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.