Souris, Nikolaos Panagiotis On a class of geodesic orbit spaces with abelian isotropy subgroup. (English) Zbl 1478.53095 Manuscr. Math. 166, No. 1-2, 101-129 (2021). We say that a Riemannian manifold \((M,g)\) is a geodesic orbit (g.o) manifold if any geodesic of \(M\) is an orbit of a one-parameter subgroup of the entire isometry group of \(M\). The author considers g.o. spaces of the form \((G/S, g)\) such that \(G\) is a compact, connected, semisimple Lie group and the isotropy subgroup \(S\) is abelian. He states (Theorem 1.1) that \(G/S\) is a g.o space if and only if \(g\) is a \(G\)-naturally reductive metric, i.e., a suitable \(G\)-invariant metric (resp., an induced from a bi-invariant Riemannian metric on \(G\)). Reviewer: Mohammed El Aïdi (Bogotá) Cited in 4 Documents MSC: 53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.) 53C30 Differential geometry of homogeneous manifolds Keywords:Homogeneous spaces: isotropy subgroup; semisimple Lie group PDF BibTeX XML Cite \textit{N. P. Souris}, Manuscr. Math. 166, No. 1--2, 101--129 (2021; Zbl 1478.53095) Full Text: DOI arXiv OpenURL References: [1] Agricola, I.; Ferreira, AC; Friedrich, T., The classification of naturally reductive homogeneous spaces in dimensions \(n\le 6\), Differ. Geom. Appl., 39, 59-92 (2015) · Zbl 1435.53040 [2] Alekseevsky D. V.: Flag manifolds. In: Sbornik Radova, 11th Jugoslav. Geom. Seminar Beograd, vol. 6(14), pp. 3-35 (1997) · Zbl 0946.53025 [3] Alekseevsky, DV; Arvanitoyeorgos, A., Riemannian flag manifolds with homogeneous geodesics, Trans. Am. Math. Soc., 359, 3769-3789 (2007) · Zbl 1148.53038 [4] Alekseevsky, DV; Nikonorov, YuG, Compact Riemannian manifolds with homogeneous geodesics, SIGMA Symmetry Integr. Geom. Methods Appl., 5, 093 (2009) · Zbl 1189.53047 [5] Arvanitoyeorgos, A., An Introduction to Lie Groups and the Geometry of Homogeneous Spaces (1999), Providence: AMS, Providence · Zbl 1045.53001 [6] Arvanitoyeorgos, A., Homogeneous manifolds whose geodesics are orbits: recent results and some open problems, Ir. Math. Soc. Bull., 79, 5-29 (2017) · Zbl 1380.53056 [7] Arvanitoyeorgos, A.; Chrysikos, I., Invariant Einstein metrics on generalized flag manifolds with two isotropy summands, J. Aust. Math. Soc., 90, 237-251 (2011) · Zbl 1228.53057 [8] Arvanitoyeorgos, A.; Chrysikos, I.; Sakane, Y., Homogeneous Einstein metrics on generalised flag manifolds with five isotropy summands, Int. J. Math., 24, 10, 1350077 (2013) · Zbl 1295.53036 [9] Berstovskii, VN; Nikonorov, YG, On \(\delta \)-homogeneous Riemannian manifolds, Differ. Geom. Appl., 26, 514-535 (2008) · Zbl 1155.53022 [10] Berstovskii, VN; Nikonorov, YG, Clifford-Wolf homogeneous Riemannian manifolds, J. Differ. Geom., 82, 467-500 (2009) · Zbl 1179.53043 [11] Bordemann, M.; Forger, M.; Romer, H., Homogeneous Kähler manifolds: paving the way towards new supersymmetric sigma models, Commun. Math. Phys., 102, 605-647 (1986) · Zbl 0585.53018 [12] Calvaruso, G.; Zaeim, A., Four-dimensional pseudo-Riemannian g.o. spaces and manifolds, J. Geom. Phys., 130, 63-80 (2018) · Zbl 1454.53025 [13] Chen, H.; Chen, Z.; Wolf, J., Geodesic orbit metrics on compact simple Lie groups arising from flag manifolds, C. R. Math., 356, 846-851 (2018) · Zbl 1397.53065 [14] Chen, Z.; Nikonorov, YG, Geodesic orbit Riemannian spaces with two isotropy summands I, Geom. Dedicata, 203, 163-178 (2019) · Zbl 1428.53063 [15] D’Atri, JE; Ziller, W., Naturally Reductive Metrics and Einstein Metrics on Compact Lie groups (1979), Providence: Memoirs of the American Mathematical Society, Providence · Zbl 0404.53044 [16] Gordon, CS, Naturally reductive homogeneous Riemannian manifolds, Can. J. Math., 37, 467-487 (1985) · Zbl 0554.53035 [17] Gordon, CS; Brezis, H., Homogeneous Riemannian manifolds whose geodesics are orbits, Topics in Geometry. Progress in Nonlinear Differential Equations and Their Applications (1996), Boston: Birkhäuser, Boston · Zbl 0861.53052 [18] Gordon, C.; Nikonorov, YG, Geodesic orbit Riemannian structures on \(R^n\), J. Geom. Phys., 134, 235-243 (2018) · Zbl 1407.53032 [19] Hall, BC, Lie Groups, Lie Algebras, and Representations, an Elementary Introduction (2015), Berlin: Springer, Berlin · Zbl 1316.22001 [20] Helgason, S., Differential Geometry, Lie Groups, and Symmetric Spaces (1978), New York: Academic Press, New York · Zbl 0451.53038 [21] Humphreys, J., Introduction to Lie Algebras and Representation Theory (1972), New York: Springer, New York · Zbl 0254.17004 [22] Kaplan, A., On the geometry of groups of Heisenberg type, Bull. Lond. Math. Soc., 15, 35-42 (1983) · Zbl 0521.53048 [23] Kowalski, O.; Nikčević, SŽ, On geodesic graphs of Riemannian g.o. spaces, Arch. Math. (Basel), 73, 223-234 (1999) · Zbl 0940.53027 [24] Kowalski, O.; Vanhecke, L., Riemannian manifolds with homogeneous geodesics, Boll. Unione Mat. Ital. B, 5, 7, 189-246 (1991) · Zbl 0731.53046 [25] Kostant, B., On differential geometry and homogeneous spaces II, Proc. Natl. Acad. Sci. USA, 42, 354-357 (1956) · Zbl 0075.31603 [26] Nikonorov, YuG, Geodesic orbit Riemannian metrics on spheres, Vladikavkaz. Mat. Zh., 15, 3, 67-76 (2013) · Zbl 1293.53062 [27] Nikonorov, YuG, On the structure of geodesic orbit Riemannian spaces, Ann. Global Anal. Geom., 52, 289-311 (2017) · Zbl 1381.53088 [28] Nikolayevsky, Y.; Nikonorov, YG, On invariant Riemannian metrics on Ledger-Obata spaces, Manuscr. Math., 158, 353-370 (2019) · Zbl 1410.53052 [29] Olmos, C.; Reggiani, S.; Tamaru, H., The index of symmetry of compact naturally reductive spaces, Math. Z., 277, 611-628 (2014) · Zbl 1302.53056 [30] Selberg, A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces, with applications to Dirichlet series, Indian Math. Soc., 20, 47-87 (1956) · Zbl 0072.08201 [31] Souris, NP, Geodesic orbit metrics in compact homogeneous manifolds with equivalent isotropy submodules, Transform. Groups, 23, 1149-1165 (2018) · Zbl 1404.53054 [32] Storm, R., A new construction of naturally reductive spaces, Transform. Groups, 23, 527-553 (2018) · Zbl 1407.53052 [33] Storm, R., The Classification of 7- and 8-dimensional naturally reductive spaces, Can. J. Math. (2019) · Zbl 1448.53059 [34] Szenthe, J., Sur la connexion naturelle à torsion nulle, Acta Sci. Math., 38, 383-398 (1976) · Zbl 0321.53029 [35] Tamaru, H., Riemannian g.o. spaces fibered over irreducible symmetric spaces, Osaka J. Math., 36, 835-851 (1999) · Zbl 0963.53026 [36] Tricerri, F.; Vanhecke, L., Naturally reductive homogeneous spaces and generalized Heisenberg groups, Compos. Math., 52, 3, 389-408 (1984) · Zbl 0551.53028 [37] Wang McKenzie, YK, Einstein Metrics from Symmetry and Bundle Constructions: A Sequel .Advanced Lectures in Mathematics, 253-309 (2012), Beijing: Higher Education Press/International Press, Beijing · Zbl 1262.53044 [38] Wolf, JA, The geometry and structure of isotropy irreducible homogeneous spaces, Acta Math., 120, 59-148 (1968) · Zbl 0157.52102 [39] Wolf, JA, Harmonic Analysis on Commutative Spaces. Mathematical Surveys and Monographs (2007), Providence: American Mathematical Society, Providence [40] Yan, Z.; Deng, S., Finsler spaces whose geodesics are orbits, Differ. Geom. Appl., 36, 1-23 (2014) · Zbl 1308.53114 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.