Samko, Natasha; Vakulov, Boris Spherical fractional and hypersingular integrals of variable order in generalized Hölder spaces with variable characteristic. (English) Zbl 1220.46018 Math. Nachr. 284, No. 2-3, 355-369 (2011). Summary: We consider nonstandard generalized Hölder spaces of functions \(f\) on the unit sphere \(\mathbb S^{n-1}\) in \(\mathbb R^n\), whose local continuity modulus \(\Omega (f, x, h)\) at a point \(x \in \mathbb S^{n-1}\) has a dominant \(\omega (x, h)\) which may vary from point to point. We establish theorems on the mapping properties of spherical potential operators of variable order \(\alpha (x)\), from such a variable generalized Hölder space to another one with a “better” dominant \(\omega _{\alpha }(x, h) = h^{\mathfrak R\alpha (x)}\omega (x, h)\), and similar mapping properties of spherical hypersingular integrals of variable order \(\alpha (x)\) from such a space into the space with “worse” dominant \(\omega _{-\alpha }(x, h) = h^{-\mathfrak R\alpha (x)}\omega (x, h)\). We admit variable complex valued orders \(\alpha (x)\) which may vanish at a set of measure zero. To cover this case, we consider the action of potential operators to weighted generalized Hölder spaces with the weight \(\alpha (x)\). Cited in 9 Documents MSC: 46E15 Banach spaces of continuous, differentiable or analytic functions 47G40 Potential operators 42B15 Multipliers for harmonic analysis in several variables 26A33 Fractional derivatives and integrals Keywords:spherical potentials; spherical hypersingular integrals; Matuszewska-Orlicz indices of almost monotonic functions; continuity modulus; generalized Hölder spaces; variable characteristics PDF BibTeX XML Cite \textit{N. Samko} and \textit{B. Vakulov}, Math. Nachr. 284, No. 2--3, 355--369 (2011; Zbl 1220.46018) Full Text: DOI OpenURL References: [1] Bary, Best approximations and differential properties of two conjugate functions (in Russian), Proc. Moscow Math. Soc. 5 pp 483– (1956) [2] L. Diening P. Hästö A. Nekvinda Open problems in variable exponent Lebesgue and Sobolev spaces, in: Function Spaces, Differential Operators and Nonlinear Analysis 2004 [3] A. E. Gatto On fractional calculus associated to doubling and non-doubling measures 15 37 · Zbl 1119.26009 [4] Gatto, On fractional differentiation on spaces of homogeneous type, Rev. Mat. Iberoam. 12 (1) pp 1– (1996) · Zbl 0921.43005 [5] Guseinov, Introduction to the theory of nonlinear singular integral equations (in Russian) pp 416– (1980) [6] Karapetiants, Weighted theorems on fractional integrals in the generalized Hölder spaces H{\(\omega\)}0({\(\rho\)}) via the indices m{\(\omega\)} and M{\(\omega\)}, Fract. Calc. Appl. Anal. 7 (4) pp 437– (2004) [7] Karapetyants, Fractional integrals and singular integrals in the Hölder classes of variable order, Integral Transform. Spec. Funct. 2 (2) pp 91– (1994) · Zbl 0842.26006 [8] Karapetyants, Fractional integro-differentiation in Hölder classes of variable order, Dokl. Akad. Nauk 339 (4) pp 439– (1994) · Zbl 0884.26006 [9] V. Kokilashvili On a progress in the theory of integral operators in weighted Banach function spaces, in: Function Spaces, Differential Operators and Nonlinear Analysis 2004 [10] Maligranda, Orlicz spaces and interpolation. Departamento de Matemática (1989) · Zbl 0874.46022 [11] Matuszewska, On some classes of functions with regard to their orders of growth, Stud. Math. 26 pp 11– (1965) · Zbl 0134.31604 [12] Nakai, The Campanato, Morrey and Holder spaces on spaces of homogeneous type, Stud. Math. 176 pp 1– (2006) · Zbl 1121.46031 [13] Ross, Fractional integration operator of variable order in the Hölder spaces H{\(\lambda\)}(x), Int. J. Math. Sci. 18 (4) pp 777– (1995) · Zbl 0838.26005 [14] Samko, Singular integral operators in weighted spaces with generalized Hölder condition, Proc. A. Razmadze Math. Inst. 120 pp 107– (1999) · Zbl 0946.45006 [15] N. G. Samko Criterion of Fredholmness of singular operators with piece-wise continuous coefficients in the generalized Hölder spaces with weight 363 376 2003 [16] Samko, On compactness of integral operators with a generalized weak singularity in weighted spaces of continuous functions with a given continuity modulus, Proc. A. Razmadze Math. Inst. 136 pp 91– (2004) · Zbl 1084.26002 [17] Samko, On non-equilibrated almost monotonic functions of the Zygmund-Bary-Stechkin class, Real Anal. Exch. 30 (2) pp 727– (2005) · Zbl 1106.26012 [18] N. G. Samko Singular integral operators in weighted spaces of continuous functions with an oscillating continuity modulus and oscillating weights, Operator Theory: Advances and Applications, Birkhäuser 323 347 2006 [19] Samko, Singular integral operators in weighted spaces of continuous functions with non-equilibrated continuity modulus, Math. Nachr. 279 (12) pp 1359– (2006) · Zbl 1116.45010 [20] Samko, Parameter depending almost monotonic functions and their applications to dimensions in metric measure spaces, J. Funct. Spaces Appl. 7 (1) pp 61– (2009) · Zbl 1179.26037 [21] Samko, Fractional integration and differentiation of variable order, Anal. Math. 21 (3) pp 213– (1995) · Zbl 0838.26006 [22] Samko, Analytical Methods and Special Functions 5 pp 358 + xvii– (2002) [23] Samko, On inversion of fractional spherical potentials by spherical hypersingular operators, Oper. Theory Adv. Appl. 142 pp 357– (2003) · Zbl 1050.47047 [24] Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators, Integral Transforms Spec. Funct. 16 (5-6) pp 461– (2005) · Zbl 1069.47056 [25] Samko, Weighted Zygmund estimates for fractional differentiation and integration, and their applications, Trudy Matem. Inst. Steklov 180 pp 197– (1987) [26] English transl. in Proc. Steklov Inst. Math. AMS 3 pp 233– (1989) [27] Samko, On equivalent norms in fractional order function spaces of continuous functions on the unit sphere, Fract. Calc. Appl. Anal. 3 (4) pp 401– (2000) [28] Vakulov, Potential type operator on a sphere in generalized Hölder classes, Izv. Vuzov. Matematika 11 pp 66– (1986) · Zbl 0632.42011 [29] English transl.: Soviet Math. (Iz. VUZ) 30 (11) pp 90– (1986) [30] Vakulov, Spherical operators of potential type in generalized weighted Hölder space on a sphere (in Russian), Izv. Vyssh. Uchebn. Zaved. Sev.-Kavk. Reg. Estestv. Nauki 127 (4) pp 5– (1999) · Zbl 1014.31002 [31] Vakulov, Spherical operators of potential type in weighted Hölder spaces of variable order (in Russian), Vladikavkaz. Mat. Zh. 7 (2) pp 26– (2005) · Zbl 1299.42047 [32] Vakulov, Spherical potentials in weighted Hölder spaces of variable order (in Russian), Dokl. Akad. Nauk 400 (1) pp 7– (2005) · Zbl 1077.46019 [33] Vakulov, Spherical potentials of complex order in the variable order Holder spaces, Integral Transforms Spec. Funct. 16 (5-6) pp 489– (2005) · Zbl 1077.46019 [34] Vakulov, Spherical convolution operators in Hölder spaces of variable order (in Russian), Mat. Zametki 80 (5) pp 683– (2006) · Zbl 1139.47027 [35] Vakulov, Spherical convolution operators with power-logarithmic kernel in generalized Hölder spaces with variable characteristic (in Russian), Izv. Vyssh. Uchebn. Zaved. Sev.-Kavk. Reg. Estestv. Nauki 1 pp 7– (2006) · Zbl 1119.47300 [36] Vakulov, Spherical potentials of complex order in the spaces with generalized variable Hölder condition (in Russian), Dokl. Akad. Nauk 407 (1) pp 12– (2006) · Zbl 1327.31020 [37] Vakulov, Spherical hypersingular operators of imaginary order and their multipliers, Fract. Calc. Appl. Anal. 4 (1) pp 101– (2001) · Zbl 1072.47513 [38] Vakulov, Spherical potentials of complex order in generalized Hölder spaces (in Russian), Izv. Nats. Akad. Nauk Arm. Mat. 36 (2) pp 54– (2001) · Zbl 1327.31020 [39] English transl. in J. Contemp. Math. Anal. 36 (2) pp 5– (2001) [40] Vakulov, Spherical potentials of complex order in generalized weighted Hölder spaces (in Russian), Dokl. Akad. Nauk 382 (3) pp 301– (2002) · Zbl 1136.31307 [41] Vakulov, Spherical convolution operators with a power-logarithmic kernel in generalized Hölder spaces (Russian), Izv. Vyssh. Uchebn. Zaved. Mat. (2) pp 3– (2003) · Zbl 1076.42010 [42] English transl. in Russian Math. (Iz. VUZ) 47 (2) pp 1– (2003) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.