Homogeneous geodesics and g.o. manifolds. (English) Zbl 1401.53041

One interesting problem in pseudo-Riemannian geometry is the description of geodesics. In order to obtain some simplifications to the problem, symmetry conditions on the manifold are assumed. In this framework, the problem of the description of geodesics in homogeneous pseudo-Riemannian manifolds \((M,g)\) is considered.
Motivated by the facts that the geodesics in a Lie group \(G\) with a bi-invariant metric are the one-parameter subgroups of \(G\), and that the geodesics in a Riemannian symmetric space \(G/H\) are orbits of the one-parameter subgroups in \(G/H\), it is natural to look for geodesics in a homogeneous space, which are orbits.
A geodesic \(\gamma (t)\) through the origin \(p\in M\) of a homogeneous pseudo-Riemannian space \((M=G/H,g)\) is said to be homogeneous if it is an orbit of a one-parameter subgroup of \(G\); that is, \[ \gamma (t)=\exp (tX)\cdot p,\quad t\in \mathbb{R}, \] where \(X\) is a non-zero vector in the Lie algebra \(\mathfrak{g}\) of \(G\). The vector \(X\in \mathfrak{g}\) is called a geodesic vector.
A homogeneous pseudo-Riemannian manifold \(M\) all of whose geodesics are homogeneous is called a pseudo- Riemannian g.o.manifold. If the isometry group \(G\) and the presentation \(M=G/H\) is fixed, it is called a g.o. space.
If the metric \(g\) is positive definite, then \((G/H,g)\) is a reductive homogeneous space, but if the metric \(g\) is indefinite, the reductive decomposition may not exist.
Therefore, the techniques in the study of geometrical problems between reductive and non-reductive pseudo-Riemannian manifolds are different. In the reductive case the geodesic vectors are characterized by an algebraic tool called geodesic lemma, meanwhile the non-reductive case can be studied in the broader context of homogeneous affine manifolds using the more fundamental affine method based on Killing vector fields. In Finsler geometry, both the algebraic approach to reductive spaces and the affine approach can be used.
The author presents both the techniques used and the previous and recent results related with the existence of homogeneous geodesics and g.o. manifolds in Riemannian, pseudo-Riemanian, affine and Finsler geometry. The paper under review is a detailed survey on the subject.


53C30 Differential geometry of homogeneous manifolds
53C22 Geodesics in global differential geometry
53C60 Global differential geometry of Finsler spaces and generalizations (areal metrics)
Full Text: DOI


[1] T. Arias-Marco, O. Kowalski: Classification of locally homogeneous affine connections, Monatsh. Math., 153 (2008) 1-18. · Zbl 1155.53009
[2] A. Arvanitoyeorgos: Homogeneous manifolds whose geodesics are orbits. Recent results and some open problems, Irish Math. Soc. Bulletin 79 (2017), 5-29. · Zbl 1380.53056
[3] A. Arvanitoyeorgos, Yu Wang: Homogeneous geodesics in generalized Wallach spaces, Bull. Belg. Math. Soc. Simon Stevin 24 (2017) 257-270. · Zbl 1385.53021
[4] A. Arvanitoyeorgos, Yu Wang, G. Zhao: Riemannian g.o. metrics in certain M spaces, Differ. Geom. Appl. 54 (2017), 59-70. · Zbl 1375.53064
[5] D. Alekseevsky, A. Arvanitoyeorgos: Metrics with homogeneous geodesics on flag manifolds, Comment. Math. Univ. Carolinae, 43,2 (2002) 189-199. · Zbl 1090.53044
[6] D. Alekseevsky, A. Arvanitoyeorgos: Riemannian flag manifolds with homogeneous geodesics, Trans. Amer. Math. Soc., 359 (2007), 3769-3789. · Zbl 1148.53038
[7] D. Alekseevsky, Yu.G. Nikonorov: Compact Riemannian manifolds with homogeneous geodesics, SIGMA 5 (2009), 093, 16 pages. · Zbl 1189.53047
[8] V. del Barco: Homogeneous geodesics in pseudo-Riemannian nilmanifolds, Adv. Geom., 16,2 (2016), 175-188. · Zbl 1338.53076
[9] G. Calvaruso, A. Fino, A. Zaeim: Homogeneous geodesics of non-reductive homogeneous pseudo-Riemannian 4-manifolds, Bull. Braz. Math. Soc., 46,1 23-64. · Zbl 1318.53048
[10] G. Calvaruso, R.A. Marinosci: Homogeneous geodesics of three-dimensional unimodular Lorentzian Lie groups, Mediterranean J. Math., 3 (2006), 467-481. 14Z. Duˇsek · Zbl 1150.53010
[11] Z. Duˇsek: Almost g.o. spaces in dimensions 6 and 7, Adv. Geom., 9 (2009), 99-110. · Zbl 1161.53035
[12] Z. Duˇsek: Explicit geodesic graphs on some H-type groups, Rend. Circ. Mat. Palermo, Serie II, Suppl. 69 (2002), 77-88. · Zbl 1025.53019
[13] Z. Duˇsek: On the reparametrization of affine homogeneous geodesics, Differential Geometry, J.A. Alvarez-Lopez and E. Garcia-Rio (Eds.), World Scientific, 2009, 217-226. · Zbl 1180.53015
[14] Z. Duˇsek: Survey on homogeneous geodesics, Note Mat., 28 (2009), suppl. n. 1, 147-168. · Zbl 1198.53052
[15] Z. Duˇsek: The existence of homogeneous geodesics in homogeneous pseudo-Riemannian and affine manifolds J. Geom. Phys., 60 (2010), 687-689. · Zbl 1190.53010
[16] Z. Duˇsek: The existence of homogeneous geodesics in special homogeneous Finsler spaces, Matematicki Vesnik, to appear. · Zbl 1326.53096
[17] Z. Duˇsek: The existence of light-like homogeneous geodesics in homogeneous Lorentzian manifolds, Math. Nachr., 288,8-9 (2015), 872-876. · Zbl 1326.53096
[18] Z. Duˇsek: Structure of geodesics in the flag manifold SO(7)/U(3), Differential Geometry and its Applications, Proc. 10th Int. Conf., O. Kowalski, D. Krupka, O. Krupkov´a and J. Slov´ak (Eds.), World Scientific, 2008, 89-98. · Zbl 1216.53046
[19] Z. Duˇsek: The affine approach to homogeneous geodesics in homogeneous Finsler spaces, preprint. · Zbl 1180.53015
[20] Z. Duˇsek, O. Kowalski: Geodesic graphs on the 13-dimensional group of Heisenberg type, Math. Nachr., 254-255 (2003), 87-96. · Zbl 1019.22004
[21] Z. Duˇsek, O. Kowalski: Light-like homogeneous geodesics and the geodesic lemma for any signature, Publ. Math. Debrecen., 71/1-2 (2007), 245-252. · Zbl 1135.53316
[22] Z. Duˇsek, O. Kowalski: Examples of pseudo-Riemannian g.o. manifolds, Geometry, Integrability and Quantization VIII, I. Mladenov and M. de Le´on (Eds.), Softex (2007), 144-155. · Zbl 1122.53030
[23] Z. Duˇsek, O. Kowalski: On six-dimensional pseudo-Riemannian almost g.o. spaces, J. Geom. Phys., 57 (2007), 2014-2023. · Zbl 1126.53026
[24] Z. Duˇsek, O. Kowalski: Geodesic graphs on special 7-dimensional Riemannian g.o. manifolds, Archivum Mathematicum, 42 (2006), Supplement, 213-227. · Zbl 1164.53361
[25] Z. Duˇsek, O. Kowalski, S. Nikˇcevi´c: New examples of Riemannian g.o. manifolds in dimension 7, Differ. Geom. Appl. 21 (2004), 65-78. · Zbl 1050.22011
[26] Z. Duˇsek, O. Kowalski, Z. Vl´aˇsek: Homogeneous geodesics in homogeneous affine manifolds, Result. Math. 54 (2009), 273-288. · Zbl 1184.53048
[27] Z. Duˇsek, O. Kowalski, Z. Vl´aˇsek: Homogeneous geodesics in 3-dimensional homogeneous affine manifolds, Acta Univ. Palacki. Olomuc. 50,1 (2011), 29-42. · Zbl 1244.53057
[28] J. Figueroa-O’Farrill, P. Meessen, S. Philip: Homogeneity and plane-wave limits, J. High Energy Physics 05 (2005), 050 .
[29] M.E. Fels, A.G. Renner, Non-reductive homogeneous pseudo-Riemannian manifolds of dimension four, Canad. J. Math., 58 (2006), 282-311. · Zbl 1100.53043
[30] C. Gordon: Homogeneous Riemannian Manifolds Whose Geodesics are Orbits, Prog. Nonlinear Differ. Eq. Appl. 20 (1996), 155-174. · Zbl 0861.53052
[31] A. Kaplan: On the geometry of groups of Heisenberg type, Bull. London Math. Soc. 15 (1983), 35-42. Homogeneous geodesics15 · Zbl 0521.53048
[32] V.V. Kajzer: Conjugate points of left-invariant metrics on Lie groups, Soviet Math. 34 (1990), 32-44; transl. from Izv. Vyssh Uchebn. Zaved. Mat. 342 (1990), 27-37. · Zbl 0722.53049
[33] O. Kowalski, S. Nikˇcevi´c: On geodesic graphs of Riemannian g.o. spaces, Arch. Math. 73 (1999), 223-234; Appendix: Arch. Math. 79 (2002), 158-160. · Zbl 0940.53027
[34] O. Kowalski, J. Szenthe: On the existence of homogeneous geodesics in homogeneous Riemannian manifolds, Geom. Dedicata 81 (2000), 209-214, Erratum: Geom. Dedicata 84 (2001), 331-332. · Zbl 0980.53061
[35] O. Kowalski, L. Vanhecke: Riemannian manifolds with homogeneous geodesics, Boll. Un. Math. Ital. B(7) 5 (1991), 189-246. · Zbl 0731.53046
[36] O. Kowalski, Z. Vl´aˇsek: Homogeneous Riemannian manifolds with only one homogeneous geodesic, Publ. Math. Debrecen 62/3-4 (2003), 437-446. · Zbl 1060.53043
[37] D. Latifi: Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys 57, (2007) 1421-1433. · Zbl 1113.53048
[38] J. Lauret: Modified H-type groups and symmetric-like Riemannian spaces, Diff. Geom. Appl. 10 (1999), 121-143. · Zbl 0942.53034
[39] P. Meessen: Homogeneous Lorentzian spaces whose null-geodesics are canonically homogeneous, Letters in Math. Phys. 75 (2006), 209-212. · Zbl 1110.53029
[40] Yu.G. Nikonorov: Geodesic orbit Riemannian metrics on spheres, Vladikavkaz. Math. J. 15,3 (2013), 67-76. · Zbl 1293.53062
[41] Yu.G. Nikonorov: On the structure of geodesic orbit Riemannian spaces Ann. Glob. Anal. Geom., online (2017), 23pp.
[42] B. Opozda: Classification of locally homogeneous connections on 2-dimensional manifolds, Diff. Geom. Appl., 21 (2004), 173-198. · Zbl 1063.53024
[43] S. Philip: Penrose limits of homogeneous spaces, J. Geom. Phys. 56 (2006), 1516-1533. · Zbl 1104.83020
[44] C. Riehm: Explicit spin representations and Lie algebras of Heisenberg type, J. London Math. Soc. (2) 32 (1985), 265-271. · Zbl 0592.22009
[45] J. Szenthe: Sur la connection naturelle ‘a torsion nulle, Acta Sci. Math. (Szeged) 38 (1976), 383-398. · Zbl 0321.53029
[46] Z. Yan: Existence of homogeneous geodesics on homogeneous Finsler spaces of odd dimension, Monatsh. Math. 182,1 (2017), 165-171. · Zbl 1366.53029
[47] Z. Yan, S. Deng: Finsler spaces whose geodesics are orbits, Differ. Geom. Appl. 36 (2014), 1-23. · Zbl 1308.53114
[48] Z. Yan, L. Huang: On the existence of homogeneous geodesic in homogeneous Finsler spaces, J. Geom. Phys. 124 (2018), 264-267. · Zbl 1388.53036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.