×

Theorems of alternatives for substructural logics. (English) Zbl 07452000

Arieli, Ofer (ed.) et al., Arnon Avron on semantics and proof theory of non-classical logics. Cham: Springer. Outst. Contrib. Log. 21, 91-105 (2021).
Summary: A theorem of alternatives provides a reduction of validity in a substructural logic to validity in its multiplicative fragment. Notable examples include a theorem of Arnon Avron that reduces the validity of a disjunction of multiplicative formulas in the “R-mingle” logic RM to the validity of a linear combination of these formulas, and Gordan’s theorem for solutions of linear systems over the real numbers that yields an analogous reduction for validity in Abelian logic A. In this paper, general conditions are provided for axiomatic extensions of involutive uninorm logic without additive constants to admit a theorem of alternatives. It is also shown that a theorem of alternatives for a logic can be used to establish (uniform) deductive interpolation and completeness with respect to a class of dense totally ordered residuated lattices.
For the entire collection see [Zbl 1470.03007].

MSC:

03-XX Mathematical logic and foundations
39-XX Difference and functional equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Avron, A. (1986). On an implication connective of RM. Notre Dame Journal of Formal Logic, 27, 201-209. · Zbl 0613.03003
[2] Avron, A. (1987). A constructive analysis of RM. Journal of Symbolic Logic, 52(4), 939-951. · Zbl 0639.03017 · doi:10.2307/2273828
[3] Avron, A. (1988). The semantics and proof theory of linear logic. Theoretical Computer Science, 57(2-3), 161-184. · Zbl 0652.03018 · doi:10.1016/0304-3975(88)90037-0
[4] Baldi, P., & Terui, K. (2016). Densification of FL-chains via residuated frames. Algebra Universalis, 75, 169-195. · Zbl 1469.03068 · doi:10.1007/s00012-016-0372-5
[5] Blount, K., & Tsinakis, C. (2003). The structure of residuated lattices. International Journal of Algebra and Computation, 13(4), 437-461. · Zbl 1048.06010 · doi:10.1142/S0218196703001511
[6] Casari, E. (1989). Comparative logics and abelian \(\ell \)-groups. In C. Bonotto, R. Ferro, S. Valentini, & A. Zanardo (Eds.), Logic Colloquium ’88(pp. 161-190). Elsevier. · Zbl 0698.03039
[7] Ciabattoni, A., & Metcalfe, G. (2008). Density elimination. Theoretical Computer Science, 403, 328-346. · Zbl 1206.03027 · doi:10.1016/j.tcs.2008.05.019
[8] Colacito, A., & Metcalfe, G. (2017). Proof theory and ordered groups. In Proceedings of WoLLIC 2017(Vol. 10388, pp. 80-91). LNCS. Springer. · Zbl 1496.03227
[9] Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton: Princeton University Press. · Zbl 0108.33103 · doi:10.7249/R366
[10] Dunn, J. M. (1970). Algebraic completeness for \({R}\)-mingle and its extensions. Journal of Symbolic Logic, 35, 1-13. · Zbl 0231.02024 · doi:10.2307/2271149
[11] Galatos, N., & Horčik, R. (2021). Densification via polynomials, languages, and frames. Journal of Pure and Applied Algebra. · Zbl 07396432
[12] Galatos, N., Jipsen, P., Kowalski, T., & Ono, H. (2007). Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier. · Zbl 1171.03001
[13] Jenei, S. (2018). Group representation, Hahn-type embedding, and the FSSC for \(IUL^{fp}\). Proceedings of LATD, 2018, 63-66.
[14] Jipsen, P., & Tsinakis, C. (2002). A survey of residuated lattices. In J. Martinez (Ed.), Ordered Algebraic Structures(pp. 19-56). xx: Kluwer. · Zbl 1070.06005 · doi:10.1007/978-1-4757-3627-4_3
[15] Kowalski, T., & Metcalfe, G. (2019). Uniform interpolation and coherence. Annals of Pure and Applied Logic, 170(7), 825-841. · Zbl 07049926 · doi:10.1016/j.apal.2019.02.004
[16] Marchioni, E., & Metcalfe, G. (2012). Craig interpolation for semilinear substructural logics. Mathematical Logic Quarterly, 58(6), 468-481. · Zbl 1273.03075 · doi:10.1002/malq.201200004
[17] Metcalfe, G., & Montagna, F. (2007). Substructural fuzzy logics. Journal of Symbolic Logic, 72(3), 834-864. · Zbl 1139.03017
[18] Metcalfe, G., Montagna, F., & Tsinakis, C. (2014). Amalgamation and interpolation in ordered algebras. Journal of Algebra, 402, 21-82. · Zbl 1318.06012
[19] Metcalfe, G., Olivetti, N., & Gabbay, D. (2005). Sequent and hypersequent calculi for abelian and Łukasiewicz logics. ACM Transactions on Computational Logic, 6(3), 578-613. · Zbl 1407.03037 · doi:10.1145/1071596.1071600
[20] Metcalfe, G., & Tsinakis, C. (2017). Density revisited. Soft Computing, 21, 175-189. · Zbl 1396.03060 · doi:10.1007/s00500-016-2420-7
[21] Meyer, R. K. (1980). Relevantly interpolating in RM. Technical Report 9, Logic Group, RSSS, Australian National University.
[22] Meyer, R. K., & Slaney, J. K. (1989). Abelian logic from A to Z. In Paraconsistent Logic: Essays on the Inconsistent(pp. 245-288). Philosophia Verlag. · Zbl 0694.03019
[23] van Gool, S., Metcalfe, G., & Tsinakis, C. (2017). Uniform interpolation and compact congruences. Annals of Pure and Applied Logic, 168, 1827-1948 · Zbl 1422.03061
[24] Jenei, S., & Montagna, F. (2002). A proof of standard completeness for Esteva and Godo’s MTL logic. Studia Logica, 70(2), 183-192. · Zbl 0997.03027 · doi:10.1023/A:1015122331293
[25] Anderson, A. R., & Belnap, N. D. (1975). Entailment(Vol. 1). Princeton University Press. · Zbl 0323.02030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.