×

Dynamics of a fractional epidemiological model with disease infection in both the populations. (English) Zbl 1460.92184

Summary: In order to depict a situation of possible spread of infection from prey to predator, a fractional-order model is developed and its dynamics is surveyed in terms of boundedness, uniqueness, and existence of the solutions. We introduce several threshold parameters to analyze various points of equilibrium of the projected model, and in terms of these threshold parameters, we have derived some conditions for the stability of these equilibrium points. Global stability of axial, predator-extinct, and disease-free equilibrium points are investigated. Novelty of this model is that fractional derivative is incorporated in a system where susceptible predators get the infection from preys while predating as well as from infected predators and both infected preys and predators do not reproduce. The occurrences of transcritical bifurcation for the proposed model are investigated. By finding the basic reproduction number, we have investigated whether the disease will become prevalent in the environment. We have shown that the predation of more number of diseased preys allows us to eliminate the disease from the environment, otherwise the disease would have remained endemic within the prey population. We notice that the fractional-order derivative has a balancing impact and it assists in administering the co-existence among susceptible prey, infected prey, susceptible predator, and infected predator populations. Numerical computations are conducted to strengthen the theoretical findings.
©2021 American Institute of Physics

MSC:

92D30 Epidemiology
92D40 Ecology
26A33 Fractional derivatives and integrals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lotka, A. J., Analytical note on certain rhythmic relations in organic systems, Proc. Natl. Acad. Sci. U.S.A., 6, 7, 410-415 (1920) · doi:10.1073/pnas.6.7.410
[2] Volterra, V., Fluctuations in the abundance of a species considered mathematically, Nature, 118, 2972, 558-560 (1926) · JFM 52.0453.03 · doi:10.1038/118558a0
[3] Zhang, F.; Chen, Y.; Li, J., Dynamical analysis of a stage-structured predator-prey model with cannibalism, Math. Biosci., 307, 33-41 (2018) · Zbl 1409.92217 · doi:10.1016/j.mbs.2018.11.004
[4] Mortoja, S. G.; Panja, P.; Mondal, S. K., Dynamics of a predator-prey model with stage-structure on both species and anti-predator behavior, Inf. Med. Unlocked, 10, 50-57 (2018) · doi:10.1016/j.imu.2017.12.004
[5] Naji, R. K.; Majeed, S. J., The dynamical analysis of a prey-predator model with a refuge-stage structure prey population, Int. J. Differ. Equations, 2016, 2010464 (2016) · Zbl 1459.92090 · doi:10.1155/2016/2010464
[6] Srinivasu, P.; Bhuvanagiri, S. R. V. P.; Venkatesulu, M., Biological control through provision of additional food to predators: A theoretical study, Theor. Popul. Biol., 72, 111-20 (2007) · Zbl 1123.92039 · doi:10.1016/j.tpb.2007.03.011
[7] Liu, P.-P., An analysis of a predator-prey model with both diffusion and migration, Math. Comput. Model., 51, 9, 1064-1070 (2010) · Zbl 1198.35124 · doi:10.1016/j.mcm.2009.12.010
[8] Kermack, W. O.; McKendrick, A. G.; Walker, G. T., A contribution to the mathematical theory of epidemics, Proc. R. Soc. London, Ser. A, 115, 772, 700-721 (1927) · JFM 53.0517.01 · doi:10.1098/rspa.1927.0118
[9] Pal, P. J.; Haque, M.; Mandal, P. K., Dynamics of a predator-prey model with disease in the predator, Math. Methods Appl. Sci., 37, 16, 2429-2450 (2014) · Zbl 1370.92142 · doi:10.1002/mma.2988
[10] Bulai, I. M.; Hilker, F. M., Eco-epidemiological interactions with predator interference and infection, Theor. Popul. Biol., 130, 191-202 (2019) · Zbl 1425.92209 · doi:10.1016/j.tpb.2019.07.016
[11] Rana, S.; Samanta, S.; Bhattacharya, S., The interplay of Allee effect in an eco-epidemiological system with disease in predator population, Bull. Calcutta Math. Soc., 108, 103-122 (2016) · Zbl 1353.92085
[12] Juneja, N. and Agnihotri, K., “Global stability of harvested prey-predator model with infection in predator species,” in Information and Decision Sciences (Springer, 2018), pp. 559-568.
[13] Anderson, R. M.; May, R. M., The invasion, persistence and spread of infectious diseases within animal and plant communities, Philos. Trans. R. Soc. London, Ser. B, 314, 1167, 533-570 (1986) · doi:10.1098/rstb.1986.0072
[14] Hadeler, K. P.; Freedman, H. I., Predator-prey populations with parasitic infection, J. Math. Biol., 27, 6, 609-631 (1989) · Zbl 0716.92021 · doi:10.1007/BF00276947
[15] Chattopadhyay, J.; Arino, O., A predator-prey model with disease in the prey, Nonlinear Anal. Theory Methods Appl., 36, 6, 747-766 (1999) · Zbl 0922.34036 · doi:10.1016/S0362-546X(98)00126-6
[16] Meng, X.-Y.; Qin, N.-N.; Huo, H.-F., Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species, J. Biol. Dyn., 12, 1, 342-374 (2018) · Zbl 1448.92235 · doi:10.1080/17513758.2018.1454515
[17] Sharma, S.; Samanta, G. P., A Leslie-Gower predator-prey model with disease in prey incorporating a prey refuge, Chaos, Solitons Fractals, 70, 69-84 (2015) · Zbl 1352.92134 · doi:10.1016/j.chaos.2014.11.010
[18] Holmes, J. and Bethel, W. M., “Modification of intermediate host behaviour by parasites,” Behavioral Aspects of Parasite Transmission, edited by E. V. Canning and C. A. Wright (Academic Press, 1972), Vol. 51, pp. 123-149.
[19] Schaller, G. B., The Serengeti Lion: A Study of Predator-Prey Relations (1972), University of Chicago Press
[20] Venturino, E., On epidemics crossing the species barrier in interacting population models, Varāhmihir J. Math. Sci., 6, 247-263 (2006) · Zbl 1138.92378
[21] Hethcote, H. W.; Wang, W.; Han, L.; Ma, Z., A predator-prey model with infected prey, Theor. Popul. Biol., 66, 3, 259-268 (2004) · doi:10.1016/j.tpb.2004.06.010
[22] Agnihotri, K.; Juneja, N., An eco-epidemic model with disease in both prey and predator, IJAEEE, 4, 3, 50-54 (2015)
[23] Hsieh, Y.-H.; Hsiao, C.-K., Predator-prey model with disease infection in both populations, Math. Med. Biol., 25, 247-66 (2008) · Zbl 1154.92040 · doi:10.1093/imammb/dqn017
[24] Gao, X.; Pan, Q.; He, M.; Kang, Y., A predator-prey model with diseases in both prey and predator, Physica A, 392, 23, 5898-5906 (2013) · Zbl 1395.92126 · doi:10.1016/j.physa.2013.07.077
[25] Kant, S.; Kumar, V., Stability analysis of predator-prey system with migrating prey and disease infection in both species, Appl. Math. Model., 42, 509-539 (2017) · Zbl 1443.92013 · doi:10.1016/j.apm.2016.10.003
[26] Das, K. P., A study of harvesting in a predator-prey model with disease in both populations, Math. Methods Appl. Sci., 39, 11, 2853-2870 (2016) · Zbl 1383.92064 · doi:10.1002/mma.3735
[27] Krishna, P. D.; Kusumika, K.; Chattopadhyay, J., A predator-prey mathematical model with both the populations affected by diseases, Ecol. Complex., 8, 1, 68-80 (2010) · doi:10.1016/j.ecocom.2010.04.001
[28] Klempner, M. S.; Shapiro, D. S., Crossing the species barrier-one small step to man, one giant leap to mankind, N. Engl. J. Med., 350, 12, 1171-1172 (2004) · doi:10.1056/NEJMp048039
[29] Chen, T.-M.; Rui, J.; Wang, Q.-P.; Zhao, Z.-Y.; Cui, J.-A.; Yin, L., A mathematical model for simulating the phase-based transmissibility of a novel coronavirus, Infect. Dis. Poverty, 9, 1, 24 (2020) · doi:10.1186/s40249-020-00640-3
[30] Kuiken, T.; Holmes, E. C.; McCauley, J.; Rimmelzwaan, G. F.; Williams, C. S.; Grenfell, B. T., Host species barriers to influenza virus infections, Science, 312, 5772, 394-397 (2006) · doi:10.1126/science.1122818
[31] Bolton, L.; J. Cloot, A. H. J.; Schoombie, S. W.; Slabbert, J. P., A proposed fractional-order Gompertz model and its application to tumour growth data, Math. Med. Biol., 32, 2, 187-207 (2015) · Zbl 1350.92023 · doi:10.1093/imammb/dqt024
[32] Li, H.-L.; Muhammadhaji, A.; Zhang, L.; Teng, Z., Stability analysis of a fractional-order predator-prey model incorporating a constant prey refuge and feedback control, Adv. Differ. Equations, 2018, 1, 325 (2018) · Zbl 1448.92216 · doi:10.1186/s13662-018-1776-7
[33] Ahmed, E.; El-Sayed, A.; El-Saka, H., Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, J. Math. Anal. Appl., 325, 1, 542-553 (2007) · Zbl 1105.65122 · doi:10.1016/j.jmaa.2006.01.087
[34] Hong-Li, L.; Zhang, L.; Cheng, H.; Jiang, Y.; Teng, Z., Dynamical analysis of a fractional-order predatorprey model incorporating a prey refuge, J. Appl. Math. Comput., 54, 435-449 (2017) · Zbl 1377.34062 · doi:10.1007/s12190-016-1017-8
[35] Das, S.; Gupta, P., A mathematical model on fractional Lotka-Volterra equations, J. Theor. Biol., 277, 1-6 (2011) · Zbl 1405.92227 · doi:10.1016/j.jtbi.2011.01.034
[36] Rivero, M.; Trujillo, J.; Vazquez, L.; Velasco, M., Fractional dynamics of populations, Appl. Math. Comput., 218, 1089-1095 (2011) · Zbl 1226.92060 · doi:10.1016/j.amc.2011.03.017
[37] Javid, I. M.; Nyamoradi, N., Dynamic analysis of a fractional order prey-predator interaction with harvesting, Appl. Math. Model., 37, 8946-8956 (2013) · Zbl 1438.92066 · doi:10.1016/j.apm.2013.04.024
[38] Mondal, S.; Lahiri, A.; Bairagi, N., Analysis of a fractional order eco-epidemiological model with prey infection and type 2 functional response, Math. Methods Appl. Sci., 40, 18, 6776-6789 (2017) · Zbl 1383.34074 · doi:10.1002/mma.4490
[39] Nugraheni, K.; Trisilowati, T.; Suryanto, A., Dynamics of a fractional order eco-epidemiological model, J. Trop. Life Sci., 7, 3, 243-250 (2017) · doi:10.11594/jtls.07.03.09
[40] Delavari, H.; Baleanu, D.; Sadati, J., Stability analysis of Caputo fractional-order nonlinear systems revisited, Nonlinear Dyn., 67, 4, 2433-2439 (2012) · Zbl 1243.93081 · doi:10.1007/s11071-011-0157-5
[41] Matouk, A. E.; Elsadany, A. A., Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model, Nonlinear Dyn., 3, 85, 1597-1612 (2016) · Zbl 1349.34016 · doi:10.1007/s11071-016-2781-6
[42] Javidi, M.; Ahmad, B., Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecol. Model., 318, C, 8-18 (2015) · doi:10.1016/j.ecolmodel.2015.06.016
[43] Podlubny, I., Fractional Differential Equations (1999), Academic Press · Zbl 0918.34010
[44] Moustafa, M.; Mohd, M. H.; Ismail, A. I.; Abdullah, F. A., Dynamical analysis of a fractional-order eco-epidemiological model with disease in prey population, Adv. Differ. Equations, 2020, 1, 48 (2020) · Zbl 1487.92050 · doi:10.1186/s13662-020-2522-5
[45] Li, Y.; Chen, Y.; Podlubny, I., Stability of fractional order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59, 1810-1821 (2010) · Zbl 1189.34015 · doi:10.1016/j.camwa.2009.08.019
[46] Baishya, C.; Jaipala, Numerical solution of fractional predator-prey model by trapezoidal based homotopy perturbation method, Int. J. Math. Arch., 9, 252-259 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.