×

Delay-coordinate maps, coherence, and approximate spectra of evolution operators. (English) Zbl 1460.37077

Summary: The problem of data-driven identification of coherent observables of measure-preserving, ergodic dynamical systems is studied using kernel integral operator techniques. An approach is proposed whereby complex-valued observables with approximately cyclical behavior are constructed from a pair of eigenfunctions of integral operators built from delay-coordinate mapped data. It is shown that these observables are \(\varepsilon \)-approximate eigenfunctions of the Koopman evolution operator of the system, with a bound \(\varepsilon\) controlled by the length of the delay-embedding window, the evolution time, and appropriate spectral gap parameters. In particular, \(\varepsilon\) can be made arbitrarily small as the embedding window increases so long as the corresponding eigenvalues remain sufficiently isolated in the spectrum of the integral operator. It is also shown that the time-autocorrelation functions of such observables are \(\varepsilon\)-approximate Koopman eigenvalues, exhibiting a well-defined characteristic oscillatory frequency (estimated using the Koopman generator) and a slowly decaying modulating envelope. The results hold for measure-preserving, ergodic dynamical systems of arbitrary spectral character, including mixing systems with continuous spectrum and no non-constant Koopman eigenfunctions in \(L^2\). Numerical examples reveal a coherent observable of the Lorenz 63 system whose autocorrelation function remains above 0.5 in modulus over approximately 10 Lyapunov timescales.

MSC:

37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.)
37M05 Simulation of dynamical systems
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alexander, R.; Zhao, Z.; Szekely, E.; Giannakis, D., Kernel analog forecasting of tropical intraseasonal oscillations, J. Atmos. Sci., 74, 1321-1342 (2017) · doi:10.1175/JAS-D-16-0147.1
[2] Arbabi, H.; Mezić, I., Ergodic theory, dynamic mode decomposition and computation of spectral properties of the Koopman operator, SIAM J. Appl. Dyn. Syst., 16, 4, 2096-2126 (2017) · Zbl 1381.37096 · doi:10.1137/17M1125236
[3] Atkinson, KE, The numerical solution of the eigenvalue problem for compact integral operators, Trans. Am. Math. Soc., 129, 3, 458-465 (1967) · Zbl 0177.18803
[4] Aubry, N.; Guyonnet, R.; Lima, R., Spatiotemporal analysis of complex signals: theory and applications, J. Stat. Phys., 64, 683-739 (1991) · Zbl 0943.37510 · doi:10.1007/bf01048312
[5] Baladi, V., Positive Transfer Operators and Decay of Correlations (2000), Singapore: World Scientific, Singapore · Zbl 1012.37015 · doi:10.1142/3657
[6] Banisch, R.; Koltai, P., Understanding the geometry of transport: diffusion maps for Lagrangian trajectory data unravel coherent sets, Chaos, 27, 035804 (2017) · Zbl 1387.37011 · doi:10.1063/1.4971788
[7] Belkin, M.; Niyogi, P., Laplacian eigenmaps for dimensionality reduction and data representation, Neural Comput., 15, 1373-1396 (2003) · Zbl 1085.68119 · doi:10.1162/089976603321780317
[8] Berry, T.; Cressman, R.; Gregurić-Ferenček, Z.; Sauer, T., Time-scale separation from diffusion-mapped delay coordinates, SIAM J. Appl. Dyn. Syst., 12, 618-649 (2013) · Zbl 1291.37101 · doi:10.1137/12088183x
[9] Berry, T.; Harlim, J., Variable bandwidth diffusion kernels, Appl. Comput. Harmon. Anal., 40, 1, 68-96 (2016) · Zbl 1343.94020 · doi:10.1016/j.acha.2015.01.001
[10] Berry, T.; Sauer, T., Local kernels and the geometric structure of data, Appl. Comput. Harmon. Anal., 40, 3, 439-469 (2016) · Zbl 1376.94002 · doi:10.1016/j.acha.2015.03.002
[11] Broomhead, DS; King, GP, Extracting qualitative dynamics from experimental data, Phys. D, 20, 2-3, 217-236 (1986) · Zbl 0603.58040 · doi:10.1016/0167-2789(86)90031-x
[12] Brunton, SL; Brunton, BW; Proctor, JL; Kaiser, E.; Kutz, JN, Chaos as an intermittently forced linear system, Nat. Commun., 8, 19 (2017) · doi:10.1038/s41467-017-00030-8
[13] Chatelin, F., Spectral Approximation of Linear Operators (2011), Philadelphia: Society for Industrial and Applied Mathematics, Philadelphia · Zbl 1214.01004 · doi:10.1137/1.9781611970678
[14] Chen, N.; Majda, AJ; Giannakis, D., Predicting the cloud patterns of the Madden-Julian Oscillation through a low-order nonlinear stochastic model, Geophys. Res. Lett., 41, 15, 5612-5619 (2014) · doi:10.1002/2014gl060876
[15] Coifman, R.; Hirn, M., Bi-stochastic kernels via asymmetric affinity functions, Appl. Comput. Harmon. Anal., 35, 1, 177-180 (2013) · Zbl 1359.62237 · doi:10.1016/j.acha.2013.01.001
[16] Coifman, RR; Lafon, S., Diffusion maps, Appl. Comput. Harmon. Anal., 21, 5-30 (2006) · Zbl 1095.68094 · doi:10.1016/j.acha.2006.04.006
[17] Constantin, P.; Foias, C.; Nicolaenko, B.; Témam, R., Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations (1989), New York: Springer, New York · Zbl 0683.58002 · doi:10.1007/978-1-4612-3506-4
[18] Crommelin, DT; Majda, AJ, Strategies for model reduction: comparing different optimal bases, J. Atmos. Sci., 61, 2206-2217 (2004) · doi:10.1175/1520-0469(2004)061<2206:sfmrcd>2.0.co;2
[19] Das, S.; Giannakis, D., Delay-coordinate maps and the spectra of Koopman operators, J. Stat. Phys., 175, 6, 1107-1145 (2019) · Zbl 1459.37023 · doi:10.1007/s10955-019-02272-w
[20] Das, S.; Giannakis, D., Koopman spectra in reproducing kernel Hilbert spaces, Appl. Comput. Harmon. Anal., 49, 2, 573-607 (2020) · Zbl 1446.37072 · doi:10.1016/j.acha.2020.05.008
[21] Das, S., Giannakis, D., Slawinska, J.: Reproducing kernel Hilbert space quantification of unitary evolution groups (2020). In minor revision
[22] Davis, PJ; Rabinowitz, P., Methods of Numerical Integration (1984), San Diego: Academic Press, San Diego · Zbl 0537.65020
[23] Dellnitz, M.; Froyland, G., On the isolated spectrum of the Perron-Frobenius operator, Nonlinearity, 13, 1171-1188 (2000) · Zbl 0965.37008 · doi:10.1088/0951-7715/13/4/310
[24] Dellnitz, M.; Junge, O., On the approximation of complicated dynamical behavior, SIAM J. Numer. Anal., 36, 491 (1999) · Zbl 0916.58021 · doi:10.1137/S0036142996313002
[25] Deyle, ER; Sugihara, G., Generalized theorems for nonlinear state space reconstruction, PLoS ONE, 6, 3, e18295 (2011) · doi:10.1371/journal.pone.0018295
[26] Eisner, T.; Farkas, B.; Haase, M.; Nagel, R., Operator Theoretic Aspects of Ergodic Theory, Graduate Texts in Mathematics (2015), Berlin: Springer, Berlin · Zbl 1353.37002 · doi:10.1007/978-3-319-16898-2
[27] Froyland, G., Dynamic isoperimetry and the geometry of Lagrangian coherent structures, Nonlinearity, 28, 3587-3622 (2015) · Zbl 1352.37063 · doi:10.1088/0951-7715/28/10/3587
[28] Genton, MC, Classes of kernels for machine learning: a statistics perspective, J. Mach. Learn. Res., 2, 299-312 (2001) · Zbl 1037.68113
[29] Giannakis, D., Data-driven spectral decomposition and forecasting of ergodic dynamical systems, Appl. Comput. Harmon. Anal., 62, 2, 338-396 (2019) · Zbl 1420.37113 · doi:10.1016/j.acha.2017.09.001
[30] Giannakis, D., Majda, A.J.: Time series reconstruction via machine learning: revealing decadal variability and intermittency in the North Pacific sector of a coupled climate model. In: Conference on Intelligent Data Understanding 2011, Mountain View, California (2011)
[31] Giannakis, D.; Majda, AJ, Comparing low-frequency and intermittent variability in comprehensive climate models through nonlinear Laplacian spectral analysis, Geophys. Res. Lett., 39, L10710 (2012) · doi:10.1029/2012GL051575
[32] Giannakis, D.; Majda, AJ, Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability, Proc. Natl. Acad. Sci., 109, 7, 2222-2227 (2012) · Zbl 1256.62053 · doi:10.1073/pnas.1118984109
[33] Giannakis, D.; Majda, AJ, Nonlinear Laplacian spectral analysis: capturing intermittent and low-frequency spatiotemporal patterns in high-dimensional data, Stat. Anal. Data Min., 6, 3, 180-194 (2013) · Zbl 07260360 · doi:10.1002/sam.11171
[34] Giannakis, D.; Ourmazd, A.; Slawinska, J.; Zhao, Z., Spatiotemporal pattern extraction by spectral analysis of vector-valued observables, J. Nonlinear Sci., 29, 5, 2385-2445 (2019) · Zbl 1428.37084 · doi:10.1007/s00332-019-09548-1
[35] Halmos, PR, Lectures on Ergodic Theory (1956), Providence: American Mathematical Society, Providence · Zbl 0073.09302
[36] Holmes, P.; Lumley, JL; Berkooz, G., Turbulence, Coherent Structures. Dynamical Systems and Symmetry (1996), Cambridge: Cambridge University Press, Cambridge · Zbl 0890.76001 · doi:10.1017/CBO9780511622700
[37] Karrasch, D.; Keller, J., A geometric heat-flow theory of Lagrangian coherent structures, J. Nonlinear Sci., 30, 1849-1888 (2020) · Zbl 1444.76099 · doi:10.1007/s00332-020-09626-9
[38] Koopman, BO, Hamiltonian systems and transformation in Hilbert space, Proc. Natl. Acad. Sci., 17, 5, 315-318 (1931) · Zbl 0002.05701 · doi:10.1073/pnas.17.5.315
[39] Koopman, BO; von Neumann, J., Dynamical systems of continuous spectra, Proc. Natl. Acad. Sci., 18, 3, 255-263 (1931) · Zbl 0006.22702 · doi:10.1073/pnas.18.3.255
[40] Korda, M.; Putinar, M.; Mezić, I., Data-driven spectral analysis of the Koopman operator, Appl. Comput. Harmon. Anal., 48, 2, 599-629 (2020) · Zbl 1436.37093 · doi:10.1016/j.acha.2018.08.002
[41] Kosambi, DD, Satistics in function space, J. Ind. Math. Soc., 7, 76-88 (1943) · Zbl 0063.03317
[42] Law, K.; Shukla, A.; Stuart, AM, Analysis of the 3DVAR filter for the partially observed Lorenz’63 model, Discrete Contin. Dyn. Syst., 34, 3, 1061-10178 (2013) · Zbl 1283.62194 · doi:10.3934/dcds.2014.34.1061
[43] Lorenz, EN, Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[44] von Luxburg, U.; Belkin, M.; Bousquet, O., Consitency of spectral clustering, Ann. Stat., 26, 2, 555-586 (2008) · Zbl 1133.62045 · doi:10.1214/009053607000000640
[45] Luzzatto, S.; Melbourne, I.; Paccaut, F., The Lorenz attractor is mixing, Commun. Math. Phys., 260, 2, 393-401 (2005) · Zbl 1082.37030 · doi:10.1007/s00220-005-1411-9
[46] Majda, M.; McLaughlin, DW; Tabak, EG, A one-dimensional model for dispersive wave turbulence, J. Nonlinear Sci., 6, 9-44 (1997) · Zbl 0882.76035 · doi:10.1007/BF02679124
[47] Mezić, I., Spectral properties of dynamical systems, model reduction and decompositions, Nonlinear Dyn., 41, 309-325 (2005) · Zbl 1098.37023 · doi:10.1007/s11071-005-2824-x
[48] Mezić, I., Banaszuk, A.: Comparison of systems with complex behavior: spectral methods. In: Proceedings of the 39th IEEE Conference on Decision and Control, pp. 1224-1231. IEEE, Sydney, Australia (1999). doi:10.1109/CDC.2000.912022
[49] Mezić, I.; Banaszuk, A., Comparison of systems with complex behavior, Phys. D, 197, 101-133 (2004) · Zbl 1059.37072 · doi:10.1016/j.physd.2004.06.015
[50] Packard, NH, Geometry from a time series, Phys. Rev. Lett., 45, 712-716 (1980) · doi:10.1103/physrevlett.45.712
[51] Robinson, JC, A topological delay embedding theorem for infinite-dimensional dynamical systems, Nonlinearity, 18, 5, 2135-2143 (2005) · Zbl 1084.37063 · doi:10.1088/0951-7715/18/5/013
[52] Sauer, T.; Weigend, AS; Gerhsenfeld, NA, Time series prediction by using delay coordinate embedding, Time Series Prediction: Forecasting the Future and Understanding the Past, 175-193 (1993), Boston: Addison-Wesley, Boston
[53] Sauer, T.; Yorke, JA; Casdagli, M., Embedology, J. Stat. Phys., 65, 3-4, 579-616 (1991) · Zbl 0943.37506 · doi:10.1007/bf01053745
[54] Slawinska, J.; Giannakis, D., Indo-Pacific variability on seasonal to multidecadal time scales. Part I: intrinsic SST modes in models and observations, J. Clim., 30, 14, 5265-5294 (2017) · doi:10.1175/JCLI-D-16-0176.1
[55] Sprott, JC, Chaos and Time-Series Analysis (2003), Oxford: Oxford University Press, Oxford · Zbl 1012.37001
[56] Steinwart, I., On the influence of the kernel on the conistency of support vector machines, J. Mach. Learn. Res., 2, 67-93 (2001) · Zbl 1009.68143
[57] Stone, MH, On one-parameter unitary groups in Hilbert space, Ann. Math., 33, 3, 643-648 (1932) · JFM 58.0424.01 · doi:10.2307/1968538
[58] Székely, E.; Giannakis, D.; Majda, AJ, Extraction and predictability of coherent intraseasonal signals in infrared brightness temperature data, Clim. Dyn., 46, 5, 1473-1502 (2016) · doi:10.1007/s00382-015-2658-2
[59] Takens, F.: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence. Lecture Notes in Mathematics, vol. 898, pp. 366-381. Springer, Berlin (1981). doi:10.1007/bfb0091924 · Zbl 0513.58032
[60] Trillos, N.G., Gerlach, M., Hein, M., Slepčev, D.: Error estimates for spectral convergence of the graph Laplacian on random geometric graphs towards the Laplace-Beltrami operator. Found. Comput. Math. (2019). doi:10.1007/s10208-019-09436-w. In press · Zbl 1447.62141
[61] Trillos, NG; Slepčev, D., A variational approach to the consistency of spectral clustering, Appl. Comput. Harmon. Anal., 45, 2, 239-281 (2018) · Zbl 1396.49013 · doi:10.1016/j.acha.2016.09.003
[62] Tucker, W., The Lorenz attractor exists, C. R. Acad. Sci. Paris Ser. I, 328, 1197-1202 (1999) · Zbl 0935.34050 · doi:10.1016/S0764-4442(99)80439-X
[63] Vautard, R.; Ghil, M., Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series, Phys. D, 35, 395-424 (1989) · Zbl 0709.62628 · doi:10.1016/0167-2789(89)90077-8
[64] Williams, MO; Kevrekidis, IG; Rowley, CW, A data-driven approximation of the Koopman operator: extending dynamic mode decomposition, J. Nonlinear Sci., 25, 6, 1307-1346 (2015) · Zbl 1329.65310 · doi:10.1007/s00332-015-9258-5
[65] Young, LS, What are SRB measures, and which dynamical systems have them?, J. Stat. Phys., 108, 733-754 (2002) · Zbl 1124.37307 · doi:10.1023/A:1019762724717
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.