Gupta, Vijay; Agrawal, P. N. Aproximation by modified Păltǎnea operators. (English) Zbl 1499.41031 Publ. Inst. Math., Nouv. Sér. 107(121), 157-164 (2020). MSC: 41A25 41A30 PDF BibTeX XML Cite \textit{V. Gupta} and \textit{P. N. Agrawal}, Publ. Inst. Math., Nouv. Sér. 107(121), 157--164 (2020; Zbl 1499.41031) Full Text: DOI
Kajla, Arun; Deshwal, Sheetal; Agrawal, P. N. Quantitative Voronovskaya and Grüss-Voronovskaya type theorems for Jain-Durrmeyer operators of blending type. (English) Zbl 1428.41027 Anal. Math. Phys. 9, No. 3, 1241-1263 (2019). MSC: 41A36 41A25 26A15 PDF BibTeX XML Cite \textit{A. Kajla} et al., Anal. Math. Phys. 9, No. 3, 1241--1263 (2019; Zbl 1428.41027) Full Text: DOI
Garg, Tarul; Acu, Ana Maria; Agrawal, Purshottam Narain Further results concerning some general Durrmeyer type operators. (English) Zbl 1429.41023 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2373-2390 (2019). Reviewer: Alexei Lukashov (Saratov) MSC: 41A36 41A10 41A25 41A60 PDF BibTeX XML Cite \textit{T. Garg} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2373--2390 (2019; Zbl 1429.41023) Full Text: DOI
Agrawal, Purshottam N.; Araci, Serkan; Bohner, Martin; Lipi, Kumari Approximation degree of Durrmeyer-Bézier type operators. (English) Zbl 1497.41020 J. Inequal. Appl. 2018, Paper No. 29, 17 p. (2018). MSC: 41A36 41A35 41A10 41A30 47A58 41A25 PDF BibTeX XML Cite \textit{P. N. Agrawal} et al., J. Inequal. Appl. 2018, Paper No. 29, 17 p. (2018; Zbl 1497.41020) Full Text: DOI
Agrawal, Purshottam Narain; Baxhaku, Behar; Chauhan, Ruchi Quantitative Voronovskaya- and Grüss-Voronovskaya-type theorems by the blending variant of Szász operators including Brenke-type polynomials. (English) Zbl 1424.41040 Turk. J. Math. 42, No. 4, 1610-1629 (2018). MSC: 41A36 26A15 41A25 41A28 PDF BibTeX XML Cite \textit{P. N. Agrawal} et al., Turk. J. Math. 42, No. 4, 1610--1629 (2018; Zbl 1424.41040) Full Text: DOI
Neer, Trapti; Agrawal, P. N. A genuine family of Bernstein-Durrmeyer type operators based on Polya basis functions. (English) Zbl 1488.41059 Filomat 31, No. 9, 2611-2623 (2017). MSC: 41A36 26A45 40A35 PDF BibTeX XML Cite \textit{T. Neer} and \textit{P. N. Agrawal}, Filomat 31, No. 9, 2611--2623 (2017; Zbl 1488.41059) Full Text: DOI
Deshwal, Sheetal; Agrawal, P. N.; Araci, Serkan Modified Stancu operators based on inverse polya eggenberger distribution. (English) Zbl 1359.41012 J. Inequal. Appl. 2017, Paper No. 57, 11 p. (2017). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{S. Deshwal} et al., J. Inequal. Appl. 2017, Paper No. 57, 11 p. (2017; Zbl 1359.41012) Full Text: DOI