Khan, Vakeel A.; Yasmeen; Fatima, Hira; Altaf, Henna A new type of paranorm intuitionistic fuzzy Zweier \(I\)-convergent double sequence spaces. (English) Zbl 1496.40014 Filomat 33, No. 5, 1279-1286 (2019). MSC: 40A35 40B05 46A45 26E50 PDF BibTeX XML Cite \textit{V. A. Khan} et al., Filomat 33, No. 5, 1279--1286 (2019; Zbl 1496.40014) Full Text: DOI
Khan, Vakeel A.; Yasmeen; Fatima, Hira; Ahamd, Ayaz Intuitionistic fuzzy Zweier \(I\)-convergent double sequence spaces defined by modulus function. (English) Zbl 1438.46084 Cogent Math. 3, Article ID 1235320, 9 p. (2016). MSC: 46S40 46A45 40A35 PDF BibTeX XML Cite \textit{V. A. Khan} et al., Cogent Math. 3, Article ID 1235320, 9 p. (2016; Zbl 1438.46084) Full Text: DOI
Khan, Vakeel A.; Khan, Nazneen; Khan, Yasmeen On Zweier paranorm I-convergent double sequence spaces. (English) Zbl 1426.46002 Cogent Math. 3, Article ID 1122257, 9 p. (2016). MSC: 46A45 40A35 PDF BibTeX XML Cite \textit{V. A. Khan} et al., Cogent Math. 3, Article ID 1122257, 9 p. (2016; Zbl 1426.46002) Full Text: DOI
Khan, Vakeel A.; Ebadullah, Khalid; Esi, Ayhan; Shafiq, Mohd On some Zweier \(I\)-convergent sequence spaces defined by a modulus function. (On some Zeweir \(I\)-convergent sequence spaces defined by a modulus function.) (English) Zbl 1328.46004 Afr. Mat. 26, No. 1-2, 115-125 (2015). MSC: 46A45 40A35 PDF BibTeX XML Cite \textit{V. A. Khan} et al., Afr. Mat. 26, No. 1--2, 115--125 (2015; Zbl 1328.46004) Full Text: DOI
Khan, Vakeel A.; Ebadullah, Khalid; Yasmeen On Zweier \(I\)-convergent sequence spaces. (English) Zbl 1316.46009 Proyecciones 33, No. 3, 259-276 (2014). MSC: 46A45 40A35 PDF BibTeX XML Cite \textit{V. A. Khan} et al., Proyecciones 33, No. 3, 259--276 (2014; Zbl 1316.46009) Full Text: DOI
Khan, Vakeel A.; Ebadullah, Khalid; Esi, Ayhan; Khan, Nazneen; Shafiq, Mohd On paranorm Zweier \(I\)-convergent sequence spaces. (English) Zbl 1285.46002 J. Math. 2013, Article ID 613501, 6 p. (2013). MSC: 46A45 40A35 PDF BibTeX XML Cite \textit{V. A. Khan} et al., J. Math. 2013, Article ID 613501, 6 p. (2013; Zbl 1285.46002) Full Text: DOI