Yaying, Taja Paranormed Riesz difference sequence spaces of fractional order. (English) Zbl 1513.46017 Kragujevac J. Math. 46, No. 2, 175-191 (2022). MSC: 46A45 46B45 PDF BibTeX XML Cite \textit{T. Yaying}, Kragujevac J. Math. 46, No. 2, 175--191 (2022; Zbl 1513.46017) Full Text: Link
Yaying, Taja; Hazarika, Bipan; Et, Mikail Matrix mappings and Hausdorff measure of non-compactness on Riesz difference spaces of fractional order. (English) Zbl 1491.46008 J. Anal. 29, No. 4, 1443-1460 (2021). MSC: 46A45 47B39 PDF BibTeX XML Cite \textit{T. Yaying} et al., J. Anal. 29, No. 4, 1443--1460 (2021; Zbl 1491.46008) Full Text: DOI
Yaying, Taja On the paranormed Nörlund difference sequence space of fractional order and geometric properties. (English) Zbl 1489.46009 Math. Slovaca 71, No. 1, 155-170 (2021). MSC: 46A45 46B45 46A80 46B20 PDF BibTeX XML Cite \textit{T. Yaying}, Math. Slovaca 71, No. 1, 155--170 (2021; Zbl 1489.46009) Full Text: DOI
Yaying, Taja; Kara, Merve İlkhan On sequence spaces defined by the domain of tribonacci matrix in \(c_0\) and \(c\). (English) Zbl 1481.46005 Korean J. Math. 29, No. 1, 25-40 (2021). MSC: 46A45 46B45 47B37 47B07 40C05 PDF BibTeX XML Cite \textit{T. Yaying} and \textit{M. İ. Kara}, Korean J. Math. 29, No. 1, 25--40 (2021; Zbl 1481.46005) Full Text: DOI
Yaying, Taja; Hazarika, Bipan; Mursaleen, M. On sequence space derived by the domain of \(q\)-Cesàro matrix in \(\ell_p\) space and the associated operator ideal. (English) Zbl 07265493 J. Math. Anal. Appl. 493, No. 1, Article ID 124453, 17 p. (2021). MSC: 47-XX 46-XX PDF BibTeX XML Cite \textit{T. Yaying} et al., J. Math. Anal. Appl. 493, No. 1, Article ID 124453, 17 p. (2021; Zbl 07265493) Full Text: DOI
Yaying, Taja; Hazarika, Bipan; Mohiuddine, S. A.; Mursaleen, M. Estimation of upper bounds of certain matrix operators on binomial weighted sequence spaces. (English) Zbl 1498.47074 Adv. Oper. Theory 5, No. 4, 1376-1389 (2020). MSC: 47B37 47A30 46A45 26D15 40G05 PDF BibTeX XML Cite \textit{T. Yaying} et al., Adv. Oper. Theory 5, No. 4, 1376--1389 (2020; Zbl 1498.47074) Full Text: DOI