Berinde, Vasile; Rus, Ioan A. Asymptotic regularity, fixed points and successive approximations. (English) Zbl 1498.47104 Filomat 34, No. 3, 965-981 (2020). Summary: Let \((M, d)\) be a metric space. In this paper we survey some of the most relevant results which relate the three concepts involved in the title: (a) the asymptotic regularity; (b) the existence (and uniqueness) of fixed points and (c) the convergence of the sequence of successive approximations to the fixed point(s), for a given operator \(f : M \to M\) or for two operators \(f,g: M \to M\) connected to each other in some sense. MSC: 47H10 Fixed-point theorems 54H25 Fixed-point and coincidence theorems (topological aspects) 47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc. 54E40 Special maps on metric spaces 65J15 Numerical solutions to equations with nonlinear operators 00A27 Lists of open problems Keywords:metric space; classes of operators on metric spaces; asymptotic regularity; fixed point; well posed problem of fixed point; orbitally quasinonexpansive operator; weakly Picard operator; equivalent fixed point equations PDF BibTeX XML Cite \textit{V. Berinde} and \textit{I. A. Rus}, Filomat 34, No. 3, 965--981 (2020; Zbl 1498.47104) Full Text: DOI OpenURL References: [1] Abtahi, M.,Fixed point theorems for Meir-Keeler type contractions in metric spaces. Fixed Point Theory17(2016), no. 2, 225-236. · Zbl 1350.54029 [2] Akkouchi, M.,Well-posedness of the fixed point problem for certain asymptotically regular mappings. Ann. Math. Sil. No.23(2009), 43-52 (2010). · Zbl 1234.54049 [3] Akkouchi, M.,A strict fixed point problem forδ-asymptotically regular multifunctions and well-posedness. Sarajevo J. Math.7(19)(2011), no. 1, 123-133. · Zbl 1232.54036 [4] Alber, Y., Reich, S. and Yao, J.-C.,Iterative methods for solving fixed point problems with nonself-mappings in Banach spaces, Abstract Appl. Anal.,4(2003), 193-216. · Zbl 1028.47049 [5] Anzai, K. and Ishikawa, S.,On common fixed points for several continuous affine mappings. Pacific J. Math.72(1977), no. 1, 1-4. · Zbl 0374.47029 [6] Aoyama, K., Eshita, K. and Takahashi, W.,Iteration processes for nonexpansive mappings in convex metric spacesIn: Proc. Int. Conf. Nonlinear Anal. Convex Anal., Okinava, 2005, 31-39. · Zbl 1125.47044 [7] Ariza-Ruiz, D., Leus¸tean, L., L ´opez-Acedo, G.,Firmly nonexpansive mappings in classes of geodesic spaces. Trans. Amer. Math. Soc. 366(2014), no. 8, 4299-4322. · Zbl 06345421 [8] Ariza-Ruiz, D., L ´opez-Acedo, G. and Mart´ın-M´arquez, V.,Firmly nonexpansive mappings. J. Nonlinear Convex Anal.15(2014), no. 1, 61-87. · Zbl 1293.47049 [9] Bachar, M., Dehaish, B. A. B. and Khamsi, M. A.,Approximate Fixed PointsIn: Fixed Point Theory and Graph Theory, 99-138, Elsevier, 2016. · Zbl 1353.54001 [10] Baillon, J. B., Bruck, R. E. and Reich, S.,On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houston J. Math.4(1978), no. 1, 1-9. · Zbl 0396.47033 [11] Bajaj, N.,Fixed point of asymptotic regular mapping. Ranchi Univ. Math. J.14(1983), 101-104 (1984). · Zbl 0547.54034 [12] Bauschke, H. H. and Borwein, J. M.,On projection algorithms for solving convex feasibility problems, SIAM Review38(1996), No. 3, 367-426. · Zbl 0865.47039 [13] Bauschke, H. H., Moffat, S. M. and Wang, X.,Near equality, near convexity, sums of maximally monotone operators, and averages of firmly nonexpansive mappings. Math. Program.139(2013), no. 1-2, Ser. B, 55-70. · Zbl 1321.47113 [14] Belluce, L. P. and Kirk, W. A.,Some fixed point theorems in metric and Banach spaces. Canad. Math. Bull.12(1969), 481-491. · Zbl 0195.42901 [15] Berinde, V.,Iterative Approximation of Fixed Points, Springer, 2007. · Zbl 1165.47047 [16] Berinde, V.,Convergence theorems for fixed point iterative methods defined as admissible perturbations of a nonlinear operator, Carpathian J. Math.,29(2013), No. 1, 9-18. · Zbl 1289.47128 [17] Berinde, V.,Approximating fixed points of enriched nonexpansive mappings by Krasnosel’skiˇıiteration in Hilbert spaces. Carpathian J. Math.35(2019), no. 3, 293-304. · Zbl 1463.47155 [18] Berinde, V., Khan, A. R. and P˘acurar, M.,Convergence theorems for admissible perturbations of pseudocontractive operators, Miskolc Math. Notes15(2014), No. 2, 27-37. · Zbl 1313.47140 [19] Berinde, V., M˘arus¸ter, S¸t. and Rus, I. A.,An abstract point of view on iterative approximation of fixed points of nonself operators, J. Nonlinear Convex Anal.,15(2014), No. 5, 851-865. · Zbl 1310.47089 [20] Berinde, V., P˘acurar, M.,Approximating fixed points of enriched contractions in Banach spaces. J. Fixed Point Theory Appl.22(2020), no. 2, Art. No. 38, 10 pp. · Zbl 1460.47039 [21] Berinde, V., P˘acurar, M. and Rus, I. A.,From a Dieudonn´e theorem concerning the Cauchy problem to an open problem in the theory of weakly Picard operators, Carpathian J. Math.30(2014), No. 3, 283-292. · Zbl 1349.54086 [22] Berinde, V., Petrus¸el, A., Rus, I. A. and S¸erban, M. A.,The retraction-displacement condition in the theory of fixed point equation with a convergent iterative algorithm, In: Mathematical Analysis, Approximation Theory and Their Applications, Springer, 2016, 75-106. · Zbl 1458.54030 [23] Berinde, V. and Rus, I. A.,Caristi-Browder operator theory in distance spaces, In: Fixed Point Theory and Graph Theory, 1-28, Elsevier, 2016. · Zbl 1356.54001 [24] Bisht, R. K.,A remark on asymptotic regularity and fixed point property. Filomat33(2019), no. 14, 4665-4671. · Zbl 1491.54059 [25] Borwein, J., Reich, S. and Shafrir, I.,Krasnosel’skiˇı-Mann iterations in normed spaces, Canad. Math. Bull.35(1992), No. 1, 21-28. · Zbl 0712.47050 [26] Borzdy ´nski, S. and Wi´snicki, A.,Applications of uniform asymptotic regularity to fixed point theorems. J. Fixed Point Theory Appl.18 (2016), no. 4, 855-866. · Zbl 1422.47061 [27] Browder, F. E.,Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Zeitschr.100(1967), 201-225. · Zbl 0149.36301 [28] Browder, F. E. and Petryshyn, W. V.,The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc.72(1966), 571-575. · Zbl 0138.08202 [29] Browder, F. E. and Petryshyn, W. V.,Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl.20(1967), No. 2, 197-228. · Zbl 0153.45701 [30] Brown, R. F.,Retraction methods in Nielsen fixed point theory. Pacific J. Math.115(1984), no. 2, 277-297. · Zbl 0514.55003 [31] Bruck, R. E.,A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math.32(1979), 107-116. · Zbl 0423.47024 [32] Bruck, R. E.,Random products of contractions in metric and Banach spaces, J. Math. Anal. Appl.88(1982), 319-332. · Zbl 0512.47042 [33] Bruck, R. E.,Asymptotic behavior of nonexpansive mappings, Contemporary Math.18(1983), 1-47. · Zbl 0528.47039 [34] Bryant, J. and Guseman, L. F., Jr.,Extensions of contractive mappings and Edelstein’s iterative test. Canad. Math. Bull.16(1973), 185-192. · Zbl 0261.47038 [35] Budzy ´nska, M., Kuczumow, T. and Reich, S.,Uniform asymptotic normal structure, the uniform semi-Opial property and fixed points of asymptotically regular uniformly Lipschitzian semigroups. I. Abstr. Appl. Anal.3(1998), no. 1-2, 133-151. · Zbl 0973.47042 [36] Budzy ´nska, M., Kuczumow, T. and Reich, S.,Uniform asymptotic normal structure, the uniform semi-Opial property, and fixed points of asymptotically regular uniformly Lipschitzian semigroups. II. Abstr. Appl. Anal.3(1998), no. 3-4, 247-263. · Zbl 1034.47507 [37] Bunlue, N. and Suantai, S.,Convergence theorems of fixed point iterative methods defined by admissible functions, Thai J. Math.13(2015), No. 3, 527-537. · Zbl 1348.47054 [38] Ceng, L.-C., Petrus¸el, A., Yao, J.-C. and Yao, Y.,Hybrid viscosity extragradient method for systems of variational inequalities, fixed point of nonexpansive mappings, zero points of accretive operators in Banach spaces, Fixed Point Theory,19(2018), No. 2, 487-502. · Zbl 1406.49010 [39] Chaoha, P. and Chanthorn, P. C.,Fixed point sets through iterations schemes, J. Math. Anal. Appl.386(2012), 273-277. · Zbl 1228.54034 [40] Ceng, L.-C., Xu, H.-K. and Yao, J.-C.,Uniformly normal structure and uniformly Lipschitzian semigroups. Nonlinear Anal.73(2010), no. 12, 3742-3750. · Zbl 1250.47055 [41] Chatterji, H.,A fixed point theorem in metric spaces. Indian J. Pure Appl. Math.10(1979), no. 4, 449-450. · Zbl 0403.54046 [42] Chidume, C.,Geometric Properties of Banach spaces and Nonlinear Iterations, Springer, 2009. · Zbl 1167.47002 [43] Chidume, C. E. and M˘arus¸ter, S¸t.,Iterative methods for the computation of fixed points of demicontractive mappings, J. Comput. Appl. Math.234(2010), 861-882. · Zbl 1191.65064 [44] ´Ciri´c, L. B.,Fixed points of asymptotically regular mappings. Math. Commun.10(2005), no. 2, 111-114. · Zbl 1089.54515 [45] Colao, V., Leus¸tean, L., L ´opez, G. and Mart´ın-M´arquez, V.,Alternative iterative methods for nonexpansive mappings, rates of convergence and applications. J. Convex Anal.18(2011), no. 2, 465-487. · Zbl 1216.47095 [46] Cominetti, R., Soto, J. A. and Vaisman, J.,On the rate of convergence of Krasnosel’ski?-Mann iterations and their connection with sums of Bernoullis. Israel J. Math.199(2014), no. 2, 757-772. · Zbl 1297.47074 [47] De Pierro, A. R. and Iusem, A. N.,On the asymptotic behavior of some alternate smoothing series expansion iterative methods. Linear algebra in image reconstruction from projections. Linear Algebra Appl.130(1990), 3-24. · Zbl 0718.65093 [48] Diaz, J. B. and Metcalf, F. T.,On the set of subsequential limit points of successive approximations. Trans. Amer. Math. Soc.135(1969), 459-485. · Zbl 0174.25904 [49] Dieudonn´e, J.,Sur la convergence des approximations successives, Bull. Sci. Math.69(1945), 62-72. · Zbl 0061.17009 [50] Dom´ınguez-Benavides, T.,Fixed point theorems for uniformly Lipschitzian mappings and asymptotically regular mappings. Nonlinear Anal.32(1998), no. 1, 15-27. · Zbl 0897.47045 [51] Dom´ınguez-Benavides, T., Jap ´on, M. A.,Opial modulus, moduli of noncompact convexity and fixed points for asymptotically regular mappings. Nonlinear Anal.41(2000), no. 5-6, Ser. A: Theory Methods, 617-630. · Zbl 0961.47036 [52] Dom´ınguez-Benavides, T., Jap ´on, M. A.,Fixed-point theorems for asymptotically regular mappings in Orlicz function spaces. Nonlinear Anal.44(2001), no. 6, Ser. A: Theory Methods, 829-842. · Zbl 0989.47048 [53] Dom´ınguez-Benavides, T., Khamsi, M. A. and Samadi, S.,Asymptotically regular mappings in modular function spaces. Sci. Math. Jpn.53(2001), no. 2, 295-304. · Zbl 0983.46028 [54] Dom´ınguez-Benavides, T.,Irregular convex sets with fixed-point property for asymptotically regular mappings in‘1. J. Nonlinear Convex Anal.18(2017), no. 2, 173-184. · Zbl 1470.46025 [55] Dom´ınguez-Benavides, T., Jap ´on, M. A. and Sadeghi Hafshejani, A.,Fixed point theorems for asymptotically regular mappings in modular and metric spaces. J. Fixed Point Theory Appl. 22 (2020), no. 1, Art. 12, 19 pp. · Zbl 1489.54082 [56] Dotson, W. G.,Fixed points of quasinonexpansive mappings, J. Austral. Math. Soc.13(1972), 167-170. · Zbl 0227.47047 [57] Edelstein, M.,A remark on a theorem of M.A. Krasnoselski, Amer. Math. Monthly73(1966), 509-510. · Zbl 0138.39901 [58] Edelstein, M. and O’Brien, R. C.,Nonexpansive mappings, asymptotic regularity and successive approximations. J. London Math. Soc. (2) 17(1978), no. 3, 547-554. · Zbl 0421.47031 [59] Eldred, A. A. and Praveen, A.,Convergence of Mann’s iteration for relatively nonexpansive mappings, Fixed Point Theory18(2017), No. 2, 545-554. · Zbl 1489.54113 [60] Engl, H. W.,Weak convergence of asymptotically regular sequences for nonexpansive mappings and connections with certain Chebyshefcenters. Nonlinear Anal.1(1976/77), no. 5, 495-501. · Zbl 0409.47040 [61] Engl, H. W.,Weak convergence of Mann iteration for nonexpansive mappings without convexity assumptions. Boll. Un. Mat. Ital. A(5) 14(1977), no. 3, 471-475. · Zbl 0409.47041 [62] Fisher, B., Pathak and H. K.; Tiwari, R.,Common fixed point theorems. Thai J. Math.7(2009), no. 1, 137-150. · Zbl 1202.54032 [63] Furi, M. and Vignoli, A.,A remark about some fixed point theorems. Boll. Un. Mat. Ital.(4) 31970 197-200. · Zbl 0193.51403 [64] Gallagher, T. M.,A weak convergence theorem for mean nonexpansive mappings. Rocky Mountain J. Math.47(2017), no. 7, 2167-2178. V. Berinde, I. A. Rus/Filomat 34:3 (2020), 965-981979 · Zbl 1464.47029 [65] Ghosh, M. K. and Debnath, L.,Convergence of Ishikawa iterates of quasi-nonexpansive mappings. J. Math. Anal. Appl.207(1997), no. 1, 96-103. · Zbl 0881.47036 [66] Goebel, K. and Kirk, W. A.,Iteration processes for nonexpansive mappings. Topological methods in nonlinear functional analysis (Toronto, Ont., 1982), 115-123, Contemp. Math. 21, Amer. Math. Soc., Providence, RI, 1983. · Zbl 0525.47040 [67] Goebel, K. and Kirk, W. A.,Topics in Metric Fixed Point Theory, Cambridge Univ. Press, 1990. · Zbl 0708.47031 [68] Goebel, K. and Kirk, W. A.,Classical theory of nonexpansive mappings. Handbook of metric fixed point theory, 49-91, Kluwer Acad. Publ., Dordrecht, 2001. · Zbl 1035.47033 [69] Goebel, K. and Reich, S.,Uniform convexity, Hyperbolic Geometry and Nonexpansive Mapping, Marcel Dekker, 1984. · Zbl 0537.46001 [70] G ´ornicki, J.,Fixed point theorems for asymptotically regular mappings in Lpspaces. Nonlinear Anal.17(1991), no. 2, 153-159. · Zbl 0758.47044 [71] G ´ornicki, J.,Fixed points of asymptotically regular mappings in spaces with uniformly normal structure. Comment. Math. Univ. Carolin. 32(1991), no. 4, 639-643. · Zbl 0768.47027 [72] G ´ornicki, J.,A fixed point theorem for asymptotically regular mappings. Colloq. Math.64(1993), no. 1, 55-57. · Zbl 0863.54036 [73] G ´ornicki, J.,Fixed points of asymptotically regular mappings. Math. Slovaca43(1993), no. 3, 327-336. · Zbl 0806.47049 [74] G ´ornicki, J.,A remark on fixed points of asymptotically regular mappings in uniformly convex Banach spaces. Zeszyty Nauk. Politech. Rzeszowskiej Mat. No.16(1994), 131-141. · Zbl 0861.47035 [75] G ´ornicki, J.,Fixed points of asymptotically regular semigroups in Banach spaces. Rend. Circ. Mat. Palermo(2) 46(1997), no. 1, 89-118. · Zbl 0889.47030 [76] G ´ornicki, J.,On the structure of fixed point sets of asymptotically regular mappings in Hilbert spaces. Topol. Methods Nonlinear Anal. 34(2009), no. 2, 383-389. · Zbl 1207.47058 [77] G ´ornicki, J.,Structure of the fixed-point set of mappings with Lipschitzian iterates. Topol. Methods Nonlinear Anal.36(2010), no. 2, 381-393. · Zbl 1301.47071 [78] G ´ornicki, J.,Geometrical coefficients and the structure of the fixed-point set of asymptotically regular mappings in Banach spaces. Nonlinear Anal.74(2011), no. 4, 1190-1199. · Zbl 1227.47033 [79] G ´ornicki, J.,Structure of the fixed-point set of asymptotically regular mappings in uniformly convex Banach spaces. Taiwanese J. Math. 15(2011), no. 3, 1007-1020. · Zbl 1278.47052 [80] G ´ornicki, J.,Remarks on asymptotic regularity and fixed points. J. Fixed Point Theory Appl.21(2019), no. 1, Paper No. 29, 20 pp. · Zbl 1470.54058 [81] Granas, A. and Dugundji, J.,Fixed point theory. Springer Monographs in Mathematics. Springer-Verlag, New York, 2003. · Zbl 1025.47002 [82] Guay, M. D. and Singh, K. L.,Fixed points of asymptotically regular mappings. Mat. Vesnik35(1983), no. 2, 101-106. · Zbl 0541.54056 [83] Hicks, T. L. and Kubicek, J. D.,On the Mann iteration process in a Hilbert space, J. Math. Anal. Appl.59(1977), 498-504. · Zbl 0361.65057 [84] Hillam, B. P., A characterization of the convergence of successive approximations. Amer. Math. Monthly 83 (1976), no. 4, 273. [85] Hirano, N.,Nonlinear ergodic theorems and weak convergence theorems. J. Math. Soc. Japan34(1982), no. 1, 35-46. · Zbl 0464.47041 [86] Ivan, D., Leus¸tean, L.,A rate of asymptotic regularity for the Mann iteration ofκ-strict pseudo-contractions. Numer. Funct. Anal. Optim. 36(2015), no. 6, 792-798. · Zbl 1334.47063 [87] Ishikawa, S.,Fixed point and iteration of a non-expansive mapping in a Banach space, Proc. Amer. Math. Soc.59(1976), 65-71. · Zbl 0352.47024 [88] Khan, M. S., Cho, Y. J., Park, W. T. and Mumtaz, T.,Coincidence and common fixed points of hybrid contractions. J. Austral. Math. Soc. Ser. A55(1993), no. 3, 369-385. · Zbl 0791.54055 [89] Kirk, W. A.,On successive approximations for nonexpansive mappings in Banach spaces. Glasgow Math. J.12(1971), 6-9. · Zbl 0223.47024 [90] Kirk, W. A.,Krasnosel’skiˇı’s iteration process in hyperbolic space, Num. Funct. Anal. Optimiz.4(1981-82), 371-381. · Zbl 0505.47046 [91] Kirk, W. A.,History and methods of metric fixed point theory. Antipodal points and fixed points, 21-54, Lecture Notes Ser., 28, Seoul Nat. Univ., Seoul, 1995. [92] Kirk, W. A.,Approximate fixed points of nonexpansive maps, Fixed Point Theory10(2009), No. 2, 275-288. · Zbl 1198.47072 [93] Kirk, W. A.,Nonexpansive mappings and asymptotic regularity. Lakshmikantham’s legacy: a tribute on his 75th birthday. Nonlinear Anal. 40(2000), no. 1-8, Ser. A: Theory Methods, 323-332. · Zbl 1018.47040 [94] Kohlembach, U.,Some computational aspect of metric fixed point theory, Nonlinear Anal.61(2005), 823-837. · Zbl 1086.47021 [95] Kohlenbach, U.,On the quantitative asymptotic behavior of strongly nonexpansive mappings in Banach and geodesic spaces. Israel J. Math. 216(2016), no. 1, 215-246. · Zbl 1358.47038 [96] Kohlenbach, U., Leus¸tean, L.,Asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces. J. Eur. Math. Soc.12 (2010), no. 1, 71-92. · Zbl 1184.03057 [97] K ¨ornlein, D.,Quantitative results for Halpern iterations of nonexpansive mappings. J. Math. Anal. Appl.428(2015), no. 2, 1161-1172. K ¨ornlein, D. and Kohlenbach, U.,Effective rates of convergence for Lipschitzian pseudocontractive mappings in general Banach spaces. Nonlinear Anal.74(2011), no. 16, 5253-5267. · Zbl 1316.47056 [98] Koutsoukou-Argyraki, A.,New effective bounds for the approximate common fixed points and asymptotic regularity of nonexpansive semigroups. J. Log. Anal.10(2018), Paper No. 7, 30 pp. · Zbl 06983477 [99] Krasnosel’skiˇı, M. A.,Two remarks about the method of successive approximations. (Russian) Uspehi Mat. Nauk (N.S.)10(1955), no. 1(63), 123-127. · Zbl 0064.12002 [100] Krasnosel’skiˇı, M. A.,Two remarks on the method of successive approximations(Romanian), Acad. R. P. Romˆıne An. Romˆıno-Soviet. Ser. Mat. Fiz. (3)10(1956), no. 2(17), 55-59. [101] Krichen, B. and O’Regan, D.,On the class of relatively weakly demicompact nonlinear operators, Fixed Point Theory19(2018), No. 2, 625-630. · Zbl 1455.58005 [102] Latif, A., Alofi, A. S. M., Al-Mazroofi, A. E. and Yao, J.-C.,General composite iterative methods for general systems of variational inequalities, Fixed Point Theory19(2018), No. 1, 287-300. · Zbl 1393.49004 [103] Lemaire, B.,Well-posedness, conditioning and regularization of minimization, inclusion and fixed-point problems. Pliska Stud. Math. Bulgar.12(1998), 71-84. · Zbl 0947.65072 [104] Leus¸tean, L.,A quadratic rate of asymptotic regularity for CAT(0)-spaces. J. Math. Anal. Appl.325(2007), no. 1, 386-399. · Zbl 1103.03057 [105] Leus¸tean, L.,Nonexpansive iterations in uniformly convex W-hyperbolic spaces, Contemporary Math.513(2010), 193-209. [106] Leus¸tean, L.,An application of proof mining to nonlinear iterations. Ann. Pure Appl. Logic165(2014), no. 9, 1484-1500. V. Berinde, I. A. Rus/Filomat 34:3 (2020), 965-981980 · Zbl 1388.03052 [107] Lin, L.-J. and Takahashi, W.,Attractive point theorems and ergodic theorems for nonlinear mappings in Hilbert spaces, Taiwanesse J. Math.16(2012), No. 5, 1763-1779. · Zbl 1269.47038 [108] Liu Z., Feng, C., Kang, S. M. and Ume, J. S.,Approximating fixed points of nonexpansive mappings in hyperspaces, Fixed Point Theory and Appl., 2007, ID50596, 9 pp. · Zbl 1154.54315 [109] Liu, Z., Khan, M. S. and Pathak, H. K.,On common fixed points. Georgian Math. J.9(2002), no. 2, 325-330. · Zbl 1013.47022 [110] Luke, D. R., Thao, N. H. and Tam, M. K.,Implicit error bounds for Picard iterations on Hilbert spaces. Vietnam J. Math.46(2018), no. 2, 243-258. · Zbl 1391.49025 [111] M˘arus¸ter, S¸t.,The solution by iteration of nonlinear equations in Hilbert spaces, Proc. Amer. Math. Soc.63(1977), No. 1, 69-73. · Zbl 0355.47037 [112] M˘arus¸ter, S¸t. and Rus, I. A.,Kannan contractions and strongly demicontractive mappings, Creative Math. Inform.24(2015), No. 2, 171-180. · Zbl 1389.47133 [113] Massa, S.,Convergence of an iterative process for a class of quasi-nonexpansive mappings. Boll. Un. Mat. Ital. A(5) 15(1978), no. 1, 154-158. · Zbl 0384.47036 [114] Narang, T. D.,On firmly nonexpansive mappings. Ultra Sci. Phys. Sci.19(2007), no. 1M, 191-194. · Zbl 1205.54042 [115] Ortega, J. M. and Rheinboldt, W. C.,Iterative Solution of Nonlinear Equation in Several Variables, Acad. Press, New York, 1970. · Zbl 0241.65046 [116] Panja, C. and Baisnab, A. P.,Asymptotic regularity and fixed point theorems. Math. Student46(1978), no. 1, 54-59 (1979). · Zbl 0535.54026 [117] P˘acurar, M.,An approximate fixed point proof of the Browder-G¨ohde-Kirk fixed point theorem. Creat. Math. Inform.17(2008), 43-47. · Zbl 1199.47220 [118] Petrus¸el, A. and Rus, I. A.,An abstract point of view on iterative approximation schemes of fixed points for multivalued operators, J. Nonlinear Sci. Appl.6(2013), 97-107. · Zbl 1432.54075 [119] Petrus¸el, A., Rus, I. A. and S¸erban, M. A.,Nonexpansive operators as graphic contractions, J. Nonlinear Convex Anal.17(2016), No. 7, 1409-1415. · Zbl 1362.47036 [120] Petrus¸el, A., Rus, I. A. and S¸erban, M. A., Frum-Ketkov operators which are weakly Picard, Carpathian J. Math. 36 (2020), no. 2 (in print). · Zbl 1478.54095 [121] Petryshyn, W. V.,Construction of fixed points of demicompact mappings in Hilbert space, J. Math. Anal. Appl.14(1966), 276-284. · Zbl 0138.39802 [122] Petryshyn, W. V. and Williamson, T. E.,Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl.43(1973), 459-497. · Zbl 0262.47038 [123] Puiwong, J. and Saejung, S.,Remarks on the successive approximation of fixed points of quasi-firmly type nonexpansive mappings. Linear Nonlinear Anal.5(2019), no. 2, 201-210. · Zbl 1484.47185 [124] Reich, S. and Shafrir, I.,The asymptotic behavior of firmly nonexpansive mappings. Proc. Amer. Math. Soc.101(1987), no. 2, 246-250. · Zbl 0649.47043 [125] Rhoades, B. E., Sessa, S., Khan, M. S. and Swaleh, M.,On fixed points of asymptotically regular mappings. J. Austral. Math. Soc. Ser. A43(1987), no. 3, 328-346. · Zbl 0659.54042 [126] Roux, D.,Applicazioni quasi non expansive: approssimazione dei punti fissi, Rendiconti di Matematica10(1977), 597-605. · Zbl 0387.47042 [127] Rus, I. A.,On a theorem of Dieudonn´e, (V. Barbu, Ed.), Diff. Eq. and Control Theory, Longmann, 1991. · Zbl 0792.34062 [128] Rus, I. A.,Weakly Picard mappings, Comment. Mat. Univ. Carolinae34(1993), No. 4, 769-773. · Zbl 0787.54045 [129] Rus, I. A.,Generalized Contractions and Applications, Cluj Univ. Press, Cluj-Napoca, 2001. · Zbl 0968.54029 [130] Rus, I. A.,Picard operators and applications, Sci. Math. Jpn.58(2003), 191-219. · Zbl 1031.47035 [131] Rus, I. A.,Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl.292(2004), No. 1, 259-261. · Zbl 1056.41004 [132] Rus, I. A.,Fixed Point Structure Theory, Cluj Univ. Press, Cluj-Napoca, 2006. · Zbl 1110.47047 [133] Rus, I. A.,An abstract point of view on iterative approximation of fixed points: impact on the theory of fixed point equations, Fixed Point Theory13(2012), No. 1, 179-192. · Zbl 1327.47066 [134] Rus, I. A.,Properties of the solutions of those equations for which the Krasnosel’skiˇıiteration converges, Carpathian J. Math.28(2012), No. 2, 329-336. · Zbl 1275.47126 [135] Rus, I. A.,Relevant clases of weakly Picard operators, Analele Univ. Vest Timis¸oara, Mat. Inf.54(2016), No. 2, 3-19. [136] Rus, I. A.,Some problems in the fixed point theory, Adv. Theory Nonlinear Anal. Appl.2(2018), No. 1, 1-10. · Zbl 1412.47164 [137] Rus, I. A., Petrus¸el, A. and Petrus¸el, G.,Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca, 2008. · Zbl 1171.54034 [138] Rus, I. A.,Convergence results for fixed point iterative algorithms in metric spaces. Carpathian J. Math.35(2019), no. 2, 209-220. · Zbl 1474.54235 [139] Saluja, G. S.,Fixed points for an admissible class of asymptotically regular semigroup in Banach spaces with weak uniformly normal structure. Math. Student75(2006), no. 1-4, 231-238 (2007). · Zbl 1159.47035 [140] Schott, D.,Basic properties of Fejer monotone sequences, Rostock Math. Kolloq.49(1995), 57-74. · Zbl 0855.65056 [141] Senter, H. F. and Dotson, W. G.,Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc.44(1974), No. 2, 375-380. · Zbl 0299.47032 [142] Sharma, P. L. and Yuel, A. K.,Fixed point theorems under asymptotic regularity at a point. II. J ˜n¯an¯abha11(1981), 127-131. · Zbl 0491.54041 [143] Sharma, P. L. and Yuel, A. K.,Fixed point theorems under asymptotic regularity at a point. Math. Sem. Notes Kobe Univ.10(1982), no. 1, 183-190. · Zbl 0504.54046 [144] Shih, M.-H. and Takahashi, W.,Positive stochastic matrices as contraction maps, J. Nonlinear Convex Anal.14(2013), No. 4, 649-650. · Zbl 1302.15045 [145] Singh, K. L.,Sequence of iterates of generalized contractions. Fund. Math.105(1979/80), no. 2, 115-126 · Zbl 0363.47028 [146] Singh, S. L., Hematulin, A. and Pant, R.,New coincidence and common fixed point theorems. Appl. Gen. Topol.10(2009), no. 1, 121-130. · Zbl 1185.54047 [147] Singh, S. L. and Mishra, S. N.,On general hybrid contractions. J. Austral. Math. Soc. Ser. A66(1999), no. 2, 244-254. · Zbl 0931.47046 [148] Singh, U. N. and Singh, R. R.,Asymptotic regularity and fixed points. Proc. Math. Soc.6(1990), 29-31 (1991). [149] Singh, S. P. and Watson, B.,On convergence results in fixed point theory, Rend. Sem. Mat. Univ. Politec. Torino51(1993), No. 2, 73-91. · Zbl 0821.47042 [150] Sipos¸, A.,Effective results on a fixed point algorithm for families of nonlinear mappings. Ann. Pure Appl. Logic168(2017), no. 1, 112-128. · Zbl 1422.03123 [151] Sipos¸, A.,The asymptotic behaviour of convex combinations of firmly nonexpansive mappings. J. Convex Anal.26(2019), no. 3, 911-924. · Zbl 07118235 [152] Smale, S.,On the efficiency of algorithms of analysis, Bull. Amer. Math. Soc.13(1985), 87-121. V. Berinde, I. A. Rus/Filomat 34:3 (2020), 965-981981 · Zbl 0592.65032 [153] Smart, D. R.,When does Tn+1x−Tnx→0imply convergence?Amer. Math. Monthly87(1980), no. 9, 748-749. · Zbl 0448.54050 [154] Smarzewski, R.,On firmly nonexpansive mappings. Proc. Amer. Math. Soc.113(1991), no. 3, 723-725. · Zbl 0734.47039 [155] S¸erban, M. A.,Fiber contraction principle with respect to an iterative algorithm, J. Operators 2013, ID408791, 6 pp. · Zbl 1300.47097 [156] Takahashi, W.,A convexity in metric space and nonexpansive mappings, Kodai Math. Sem. Rep.22(1970), 142-149. · Zbl 0268.54048 [157] Takahashi, W.,Nonlinear Functional Analysis. Fixed Point Theory and Applications, Yokohama Publ., Yokohama, 2000. · Zbl 0997.47002 [158] Thole, R. L.,Iterative techniques for approximation of fixed points of certain nonlinear mappings in Banach spaces, Pacific J. Math.53 (1974), 259-266. · Zbl 0297.47046 [159] Timis¸, I.,New stability results of Picard iteration for contractive type mappings, Fasciculi Math. 2016, Nr. 56, DOI: 10.1515. · Zbl 1354.54047 [160] Toscano, E. and Vetro, C.,Admissible perturbations ofα-ψ-pseudocontractive operators: convergence theorems, Math. Methods Appl. Sci.40(2016), No. 5, 1438-1447. · Zbl 1362.41011 [161] Toscano, E. and Vetro, C.,Fixed point iterative schemes for variational inequality problems, J. Convex Anal.25(2018), No. 2, 701-715. · Zbl 06872019 [162] Tricomi, F.,Un teorema sulla convergenza delle successioni formate delle successive iterate di una fuzione di una variabile reale, Giorn. Mat. Battoglini54(1916), 1-9. · JFM 46.0439.03 [163] T¸ical˘a, C.,Approximating solutions of generalized pseudocontractive variational inequalities by admissible perturbation type iterative methods. Creat. Math. Inform.22(2013), no. 2, 237-241. · Zbl 1313.47112 [164] T¸ical˘a, C.,A weak convergence theorem for a Krasnosel’skiˇıtype fixed point iterative method in Hilbert spaces using an admissible perturbation. Sci. Stud. Res. Ser. Math. Inform.25(2015), no. 1, 243-251. · Zbl 1349.47120 [165] T¸ical˘a, C.,Approximating fixed points of demicontractive mappings by iterative methods defined as admissible perturbations. Creat. Math. Inform.25(2016), no. 1, 121-126. · Zbl 1389.47168 [166] T¸ical˘a, C.,Approximating fixed points of asymptotically demicontractive mapping by iterative schemes defined as admissible perturbations, Carpathian J. Math.33(2017), No. 3, 381-388. · Zbl 1399.47188 [167] Xu, H.-K. and Yamada, I.,Asymptotic regularity of linear power bounded operators. Taiwanese J. Math.10(2006), no. 2, 417-429. · Zbl 1106.47032 [168] Yang, H. and Yu, J.,Unified approaches to well-posedness with some applications. J. Global Optim.31(2005), no. 3, 371-381. · Zbl 1080.49021 [169] Yuel, A. K. and Sharma, P. L.,Fixed point theorems under asymptotic regularity at a point. Bull. Calcutta Math. Soc.76(1984), no. 3, 157-161. · Zbl 0587.54065 [170] Zhou, M.,Existence of common fixed points for a couple of asymptotically regular mappings with an application. Nonlinear Anal. Forum 14(2009), 137-143 · Zbl 1486.54077 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.