Gairola, Asha Ram; Singh, Amrita; Rathour, Laxmi; Mishra, Vishnu Narayan Improved rate of approximation by modification of Baskakov operator. (English) Zbl 07665221 Oper. Matrices 16, No. 4, 1097-1123 (2022). MSC: 41A35 41A10 41A25 PDF BibTeX XML Cite \textit{A. R. Gairola} et al., Oper. Matrices 16, No. 4, 1097--1123 (2022; Zbl 07665221) Full Text: DOI OpenURL
Agrawal, Gunjan; Gupta, Vijay Modified Lupaş-Kantorovich operators with Pólya distribution. (English) Zbl 07639779 Rocky Mt. J. Math. 52, No. 6, 1909-1919 (2022). MSC: 41A25 PDF BibTeX XML Cite \textit{G. Agrawal} and \textit{V. Gupta}, Rocky Mt. J. Math. 52, No. 6, 1909--1919 (2022; Zbl 07639779) Full Text: DOI Link OpenURL
Mouçouf, Mohammed; Zriaa, Said A new approach for computing the inverse of confluent Vandermonde matrices via Taylor’s expansion. (English) Zbl 07638923 Linear Multilinear Algebra 70, No. 20, 5973-5986 (2022). Reviewer: Ilya Spitkovsky (Williamsburg) MSC: 15A09 41A58 PDF BibTeX XML Cite \textit{M. Mouçouf} and \textit{S. Zriaa}, Linear Multilinear Algebra 70, No. 20, 5973--5986 (2022; Zbl 07638923) Full Text: DOI arXiv OpenURL
Dutta, Sudipta; Ghosh, Rima \(A^{\mathcal{I}}\)-statistical approximation of continuous functions by sequence of convolution operators. (English) Zbl 07637223 Kragujevac J. Math. 46, No. 3, 355-368 (2022). MSC: 40A35 47B38 41A25 41A36 PDF BibTeX XML Cite \textit{S. Dutta} and \textit{R. Ghosh}, Kragujevac J. Math. 46, No. 3, 355--368 (2022; Zbl 07637223) Full Text: Link OpenURL
Bustamante, Jorge Directs estimates and a Voronovskaja-type formula for Mihesan operators. (English) Zbl 07632138 Constr. Math. Anal. 5, No. 4, 202-213 (2022). MSC: 42A10 41A17 41A25 41A27 PDF BibTeX XML Cite \textit{J. Bustamante}, Constr. Math. Anal. 5, No. 4, 202--213 (2022; Zbl 07632138) Full Text: DOI OpenURL
Aral, Nazlım Deniz; Sevinç, Zeynep On the \(q\)-analogues for some Kantorovich type linear operators. (English) Zbl 07565739 J. Math. Inequal. 16, No. 2, 575-586 (2022). MSC: 41A36 05A30 41A25 47A35 PDF BibTeX XML Cite \textit{N. D. Aral} and \textit{Z. Sevinç}, J. Math. Inequal. 16, No. 2, 575--586 (2022; Zbl 07565739) Full Text: DOI OpenURL
Chandra, Prem; Karanjgaokar, Varsha Trigonometric approximation of functions in \(L_1\)-norm. (English) Zbl 07551291 Period. Math. Hung. 84, No. 2, 177-185 (2022). Reviewer: Zoltán Finta (Cluj-Napoca) MSC: 41A25 40G05 42A10 PDF BibTeX XML Cite \textit{P. Chandra} and \textit{V. Karanjgaokar}, Period. Math. Hung. 84, No. 2, 177--185 (2022; Zbl 07551291) Full Text: DOI OpenURL
Prakash, Chandra; Deo, Naokant; Verma, D. K. Bézier variant of Bernstein-Durrmeyer blending-type operators. (English) Zbl 07545956 Asian-Eur. J. Math. 15, No. 6, Article ID 2250103, 17 p. (2022). MSC: 41A36 26A15 41A25 41A30 PDF BibTeX XML Cite \textit{C. Prakash} et al., Asian-Eur. J. Math. 15, No. 6, Article ID 2250103, 17 p. (2022; Zbl 07545956) Full Text: DOI OpenURL
Holhoş, Adrian Voronovskaya-type results for positive linear operators of exponential type and their derivatives. (English) Zbl 07544777 Bull. Malays. Math. Sci. Soc. (2) 45, No. 4, 1839-1861 (2022). Reviewer: Rishikesh Yadav (Namur) MSC: 41A36 41A28 PDF BibTeX XML Cite \textit{A. Holhoş}, Bull. Malays. Math. Sci. Soc. (2) 45, No. 4, 1839--1861 (2022; Zbl 07544777) Full Text: DOI OpenURL
Yilmaz, Övgü Gürel; Aktaş, Rabia; Yeşildal, Fatma Taşdelen; Olgun, Ali On approximation properties of generalized Lupaş type operators based on Polya distribution with Pochhammer \(k\)-symbol. (English) Zbl 07525838 Hacet. J. Math. Stat. 51, No. 2, 338-361 (2022). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{Ö. G. Yilmaz} et al., Hacet. J. Math. Stat. 51, No. 2, 338--361 (2022; Zbl 07525838) Full Text: DOI arXiv OpenURL
Mishra, Vishnu Narayan; Yadav, Rishikesh Approximation on a new class of Szász-Mirakjan operators and their extensions in Kantorovich and Durrmeyer variants with applicable properties. (English) Zbl 1491.41010 Georgian Math. J. 29, No. 2, 245-273 (2022). Reviewer: Neha Malik (New Delhi) MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{V. N. Mishra} and \textit{R. Yadav}, Georgian Math. J. 29, No. 2, 245--273 (2022; Zbl 1491.41010) Full Text: DOI OpenURL
Acu, Ana-Maria; Dancs, Madalina; Heilmann, Margareta; Paşca, Vlad; Rasa, Ioan Voronovskaya type results for special sequences of operators. (English) Zbl 1483.41005 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 1, Paper No. 19, 13 p. (2022). Reviewer: Vijay Gupta (New Delhi) MSC: 41A25 41A36 PDF BibTeX XML Cite \textit{A.-M. Acu} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 1, Paper No. 19, 13 p. (2022; Zbl 1483.41005) Full Text: DOI OpenURL
Zălinescu, Constantin On Berinde’s method for comparing iterative processes. (English) Zbl 07525606 Fixed Point Theory Algorithms Sci. Eng. 2021, Paper No. 2, 9 p. (2021). MSC: 41A99 PDF BibTeX XML Cite \textit{C. Zălinescu}, Fixed Point Theory Algorithms Sci. Eng. 2021, Paper No. 2, 9 p. (2021; Zbl 07525606) Full Text: DOI arXiv OpenURL
Alotaibi, Abdullah; Özger, Faruk; Mohiuddine, S. A.; Alghamdi, Mohammed A. Approximation of functions by a class of Durrmeyer-Stancu type operators which includes Euler’s beta function. (English) Zbl 1485.41009 Adv. Difference Equ. 2021, Paper No. 13, 14 p. (2021). MSC: 41A35 41A36 41A25 41A10 41A17 PDF BibTeX XML Cite \textit{A. Alotaibi} et al., Adv. Difference Equ. 2021, Paper No. 13, 14 p. (2021; Zbl 1485.41009) Full Text: DOI OpenURL
Coroianu, Lucian; Costarelli, Danilo; Gal, Sorin G.; Vinti, Gianluca Connections between the approximation orders of positive linear operators and their max-product counterparts. (English) Zbl 1483.41007 Numer. Funct. Anal. Optim. 42, No. 11, 1263-1286 (2021). Reviewer: Vijay Gupta (New Delhi) MSC: 41A25 41A35 PDF BibTeX XML Cite \textit{L. Coroianu} et al., Numer. Funct. Anal. Optim. 42, No. 11, 1263--1286 (2021; Zbl 1483.41007) Full Text: DOI OpenURL
Çetin, Nursel Approximation by \(\alpha\)-Bernstein-Schurer operator. (English) Zbl 1488.41046 Hacet. J. Math. Stat. 50, No. 3, 732-743 (2021). MSC: 41A36 41A10 41A25 PDF BibTeX XML Cite \textit{N. Çetin}, Hacet. J. Math. Stat. 50, No. 3, 732--743 (2021; Zbl 1488.41046) Full Text: DOI OpenURL
Sun, Longfa; Sun, Yuqi; Zhang, Wen; Zheng, Zheming On the sum of simultaneously proximinal sets. (English) Zbl 1499.46042 Hacet. J. Math. Stat. 50, No. 3, 668-677 (2021). MSC: 46B20 41A65 PDF BibTeX XML Cite \textit{L. Sun} et al., Hacet. J. Math. Stat. 50, No. 3, 668--677 (2021; Zbl 1499.46042) Full Text: DOI arXiv OpenURL
Chandra, Prem Approximation of functions in \(H( \alpha,p)\)-space by Taylor means. (English) Zbl 1499.42005 J. Indian Math. Soc., New Ser. 88, No. 3-4, 258-274 (2021). MSC: 42A10 41A25 40G10 PDF BibTeX XML Cite \textit{P. Chandra}, J. Indian Math. Soc., New Ser. 88, No. 3--4, 258--274 (2021; Zbl 1499.42005) OpenURL
Debernardi, Alberto; Liflyand, Elijah Approximation via Hausdorff operators. (English) Zbl 1481.41010 Can. Math. Bull. 64, No. 3, 512-529 (2021). Reviewer: Vijay Gupta (New Delhi) MSC: 41A35 42A38 PDF BibTeX XML Cite \textit{A. Debernardi} and \textit{E. Liflyand}, Can. Math. Bull. 64, No. 3, 512--529 (2021; Zbl 1481.41010) Full Text: DOI arXiv OpenURL
Gupta, Vijay; Muraru, Carmen Popescu; Radu, Voichiţa Adriana Convergence of certain hybrid operators. (English) Zbl 1477.41010 Rocky Mt. J. Math. 51, No. 4, 1249-1258 (2021). Reviewer: Neha Malik (New Delhi) MSC: 41A25 41A30 41A81 PDF BibTeX XML Cite \textit{V. Gupta} et al., Rocky Mt. J. Math. 51, No. 4, 1249--1258 (2021; Zbl 1477.41010) OpenURL
Kumar, Abhishek A new kind of variant of the Kantorovich type modification operators introduced by D. D. Stancu. (English) Zbl 1477.41011 Results Appl. Math. 11, Article ID 100158, 19 p. (2021). MSC: 41A36 26A15 PDF BibTeX XML Cite \textit{A. Kumar}, Results Appl. Math. 11, Article ID 100158, 19 p. (2021; Zbl 1477.41011) Full Text: DOI OpenURL
Arpaguş, Seda; Olgun, Ali Approximation properties of modified Baskakov gamma operators. (English) Zbl 1488.41042 Facta Univ., Ser. Math. Inf. 36, No. 1, 125-141 (2021). MSC: 41A36 41A10 41A25 PDF BibTeX XML Cite \textit{S. Arpaguş} and \textit{A. Olgun}, Facta Univ., Ser. Math. Inf. 36, No. 1, 125--141 (2021; Zbl 1488.41042) Full Text: DOI OpenURL
Çetin, Nursel; Acu, Ana-Maria Approximation by \(\alpha\)-Bernstein-Schurer-Stancu operators. (English) Zbl 1471.41011 J. Math. Inequal. 15, No. 2, 845-860 (2021). Reviewer: Ioan Raşa (Cluj-Napoca) MSC: 41A36 41A10 41A25 PDF BibTeX XML Cite \textit{N. Çetin} and \textit{A.-M. Acu}, J. Math. Inequal. 15, No. 2, 845--860 (2021; Zbl 1471.41011) Full Text: DOI OpenURL
Gupta, Vijay; Agrawal, P. N. Aproximation by modified Păltǎnea operators. (English) Zbl 1499.41031 Publ. Inst. Math., Nouv. Sér. 107(121), 157-164 (2020). MSC: 41A25 41A30 PDF BibTeX XML Cite \textit{V. Gupta} and \textit{P. N. Agrawal}, Publ. Inst. Math., Nouv. Sér. 107(121), 157--164 (2020; Zbl 1499.41031) Full Text: DOI OpenURL
Ada, Gülsüm Ulusoy Genuine modified Baskakov-Durrmeyer operators. (English) Zbl 1488.41039 Facta Univ., Ser. Math. Inf. 35, No. 4, 1145-1155 (2020). MSC: 41A36 41A25 41A35 PDF BibTeX XML Cite \textit{G. U. Ada}, Facta Univ., Ser. Math. Inf. 35, No. 4, 1145--1155 (2020; Zbl 1488.41039) Full Text: DOI OpenURL
Holhoş, Adrian The product of two functions using positive linear operators. (English) Zbl 1463.41053 Constr. Math. Anal. 3, No. 2, 64-74 (2020). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{A. Holhoş}, Constr. Math. Anal. 3, No. 2, 64--74 (2020; Zbl 1463.41053) Full Text: DOI OpenURL
Turkun, Can; Duman, Oktay Modified neural network operators and their convergence properties with summability methods. (English) Zbl 1440.41011 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 3, Paper No. 132, 18 p. (2020). Reviewer: Vijay Gupta (New Delhi) MSC: 41A25 40F05 PDF BibTeX XML Cite \textit{C. Turkun} and \textit{O. Duman}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 3, Paper No. 132, 18 p. (2020; Zbl 1440.41011) Full Text: DOI OpenURL
Bhatt, Dhawal J.; Mishra, Vishnu Narayan; Jana, Ranjan Kumar New class of beta type operators approximating integrable function. (English) Zbl 1443.41013 Adv. Oper. Theory 5, No. 2, 301-323 (2020). Reviewer: Vijay Gupta (New Delhi) MSC: 41A30 41A36 PDF BibTeX XML Cite \textit{D. J. Bhatt} et al., Adv. Oper. Theory 5, No. 2, 301--323 (2020; Zbl 1443.41013) Full Text: DOI OpenURL
Abel, Ulrich; Siebert, Hartmut An improvement of the constant in Videnskiĭ’s inequality for Bernstein polynomials. (English) Zbl 1437.41008 Georgian Math. J. 27, No. 1, 1-7 (2020). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{U. Abel} and \textit{H. Siebert}, Georgian Math. J. 27, No. 1, 1--7 (2020; Zbl 1437.41008) Full Text: DOI OpenURL
Jena, B. B.; Mishra, Lakshmi Narayan; Paikray, S. K.; Misra, U. K. Approximation of signals by general matrix summability with effects of Gibbs phenomenon. (English) Zbl 1431.42002 Bol. Soc. Parana. Mat. (3) 38, No. 6, 141-158 (2020). MSC: 42A10 41A25 PDF BibTeX XML Cite \textit{B. B. Jena} et al., Bol. Soc. Parana. Mat. (3) 38, No. 6, 141--158 (2020; Zbl 1431.42002) Full Text: Link OpenURL
Bhatt, Dhawal J.; Mishra, Vishnu Narayan; Jana, Ranjan Kumar On a new class of Bernstein type operators based on Beta function. (English) Zbl 1449.47033 Khayyam J. Math. 6, No. 1, 1-15 (2020). MSC: 47A58 41A36 41A30 PDF BibTeX XML Cite \textit{D. J. Bhatt} et al., Khayyam J. Math. 6, No. 1, 1--15 (2020; Zbl 1449.47033) Full Text: DOI OpenURL
Testici, Ahmet Approximation by Nörlund and Riesz means in weighted Lebesgue space with variable exponent. (English) Zbl 1493.42003 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 2, 2014-2025 (2019). Reviewer: Włodzimierz Łenski (Poznań) MSC: 42A10 41A25 41A30 PDF BibTeX XML Cite \textit{A. Testici}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 2, 2014--2025 (2019; Zbl 1493.42003) Full Text: DOI OpenURL
Deo, Naokant; Dhamija, Minakshi; Miclăuş, Dan New modified Baskakov operators based on the inverse Pólya-Eggenberger distribution. (English) Zbl 1499.41055 Filomat 33, No. 11, 3537-3550 (2019). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{N. Deo} et al., Filomat 33, No. 11, 3537--3550 (2019; Zbl 1499.41055) Full Text: DOI OpenURL
Başcanbaz-Tunca, Gülen; Erençin, Ayşegül; İnce-İlarslan, Hatice Gül Quantitative estimates for modified beta operators. (English) Zbl 1474.41048 Mat. Vesn. 71, No. 4, 359-367 (2019). MSC: 41A36 PDF BibTeX XML Cite \textit{G. Başcanbaz-Tunca} et al., Mat. Vesn. 71, No. 4, 359--367 (2019; Zbl 1474.41048) Full Text: Link Link OpenURL
Finta, Zoltán A quantitative variant of Voronovskaja’s theorem for King-type operators. (English) Zbl 1463.41024 Constr. Math. Anal. 2, No. 3, 124-129 (2019). MSC: 41A25 41A36 PDF BibTeX XML Cite \textit{Z. Finta}, Constr. Math. Anal. 2, No. 3, 124--129 (2019; Zbl 1463.41024) Full Text: DOI OpenURL
Chandok, Sumit Best approximation and fixed points for rational-type contraction mappings. (English) Zbl 1434.41025 J. Appl. Anal. 25, No. 2, 205-209 (2019). MSC: 41A50 47H10 54H25 PDF BibTeX XML Cite \textit{S. Chandok}, J. Appl. Anal. 25, No. 2, 205--209 (2019; Zbl 1434.41025) Full Text: DOI OpenURL
Çetin, Nursel; Radu, Voichiţa Adriana Approximation by generalized Bernstein-Stancu operators. (English) Zbl 1434.41014 Turk. J. Math. 43, No. 4, 2032-2048 (2019). MSC: 41A36 41A10 41A25 PDF BibTeX XML Cite \textit{N. Çetin} and \textit{V. A. Radu}, Turk. J. Math. 43, No. 4, 2032--2048 (2019; Zbl 1434.41014) Full Text: Link OpenURL
Kajla, Arun; Deshwal, Sheetal; Agrawal, P. N. Quantitative Voronovskaya and Grüss-Voronovskaya type theorems for Jain-Durrmeyer operators of blending type. (English) Zbl 1428.41027 Anal. Math. Phys. 9, No. 3, 1241-1263 (2019). MSC: 41A36 41A25 26A15 PDF BibTeX XML Cite \textit{A. Kajla} et al., Anal. Math. Phys. 9, No. 3, 1241--1263 (2019; Zbl 1428.41027) Full Text: DOI OpenURL
Kajla, Arun; Acar, Tuncer Modified \(\alpha\)-Bernstein operators with better approximation properties. (English) Zbl 1428.41026 Ann. Funct. Anal. 10, No. 4, 570-582 (2019). MSC: 41A36 41A10 41A25 PDF BibTeX XML Cite \textit{A. Kajla} and \textit{T. Acar}, Ann. Funct. Anal. 10, No. 4, 570--582 (2019; Zbl 1428.41026) Full Text: DOI Euclid OpenURL
Acar, Tuncer; Cappelletti Montano, Mirella; Garrancho, Pedro; Leonessa, Vita On sequences of J. P. King-type operators. (English) Zbl 1423.41027 J. Funct. Spaces 2019, Article ID 2329060, 12 p. (2019). MSC: 41A36 41A35 PDF BibTeX XML Cite \textit{T. Acar} et al., J. Funct. Spaces 2019, Article ID 2329060, 12 p. (2019; Zbl 1423.41027) Full Text: DOI OpenURL
Acu, Ana-Maria; Acar, Tuncer; Radu, Voichiţa Adriana Approximation by modified \(U^{\rho }_n\) operators. (English) Zbl 1423.41028 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2715-2729 (2019). Reviewer: Zoltán Finta (Cluj-Napoca) MSC: 41A36 41A10 41A25 PDF BibTeX XML Cite \textit{A.-M. Acu} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2715--2729 (2019; Zbl 1423.41028) Full Text: DOI OpenURL
Garg, Tarul; Acu, Ana Maria; Agrawal, Purshottam Narain Further results concerning some general Durrmeyer type operators. (English) Zbl 1429.41023 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2373-2390 (2019). Reviewer: Alexei Lukashov (Saratov) MSC: 41A36 41A10 41A25 41A60 PDF BibTeX XML Cite \textit{T. Garg} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2373--2390 (2019; Zbl 1429.41023) Full Text: DOI OpenURL
Anastassiou, George A. Quantitative approximation by perturbed Kantorovich-Choquet neural network operators. (English) Zbl 1416.41016 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 875-900 (2019). MSC: 41A25 41A17 41A30 41A35 PDF BibTeX XML Cite \textit{G. A. Anastassiou}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 875--900 (2019; Zbl 1416.41016) Full Text: DOI OpenURL
Acu, Ana-Maria; Gupta, Vijay; Tachev, Gancho Better numerical approximation by Durrmeyer type operators. (English) Zbl 1423.41029 Result. Math. 74, No. 3, Paper No. 90, 24 p. (2019). Reviewer: Zoltán Finta (Cluj-Napoca) MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{A.-M. Acu} et al., Result. Math. 74, No. 3, Paper No. 90, 24 p. (2019; Zbl 1423.41029) Full Text: DOI arXiv OpenURL
Gupta, Vijay; Tachev, Gancho; Acu, Ana-Maria Modified Kantorovich operators with better approximation properties. (English) Zbl 1508.41005 Numer. Algorithms 81, No. 1, 125-149 (2019). Reviewer: Tuncer Acar (Selcuklu) MSC: 41A25 41A36 PDF BibTeX XML Cite \textit{V. Gupta} et al., Numer. Algorithms 81, No. 1, 125--149 (2019; Zbl 1508.41005) Full Text: DOI OpenURL
Dirik, Fadime; Okçu Şahin, Pınar Statistical equi-equal convergence of positive linear operators. (English) Zbl 1436.41014 Positivity 23, No. 1, 1-10 (2019). Reviewer: Vijay Gupta (New Delhi) MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{F. Dirik} and \textit{P. Okçu Şahin}, Positivity 23, No. 1, 1--10 (2019; Zbl 1436.41014) Full Text: DOI OpenURL
Kajla, Arun; Miclǎuş, Dan Approximation by Stancu-Durrmeyer type operators based on Pólya-Eggenberger distribution. (English) Zbl 1499.41068 Filomat 32, No. 12, 4249-4261 (2018). MSC: 41A36 26A15 41A25 PDF BibTeX XML Cite \textit{A. Kajla} and \textit{D. Miclǎuş}, Filomat 32, No. 12, 4249--4261 (2018; Zbl 1499.41068) Full Text: DOI OpenURL
Agrawal, Purshottam N.; Araci, Serkan; Bohner, Martin; Lipi, Kumari Approximation degree of Durrmeyer-Bézier type operators. (English) Zbl 1497.41020 J. Inequal. Appl. 2018, Paper No. 29, 17 p. (2018). MSC: 41A36 41A35 41A10 41A30 47A58 41A25 PDF BibTeX XML Cite \textit{P. N. Agrawal} et al., J. Inequal. Appl. 2018, Paper No. 29, 17 p. (2018; Zbl 1497.41020) Full Text: DOI OpenURL
Mursaleen, M.; Al-Abied, A. A. H. Blending type approximation by Stancu-Kantorovich operators associated with the inverse Pólya-Eggenberger distribution. (English) Zbl 1435.41026 Tbil. Math. J. 11, No. 4, 79-91 (2018). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{M. Mursaleen} and \textit{A. A. H. Al-Abied}, Tbil. Math. J. 11, No. 4, 79--91 (2018; Zbl 1435.41026) Full Text: DOI Euclid OpenURL
Mishra, Vishnu Narayan; Yadav, Rishikesh Some estimations of summation-integral-type operators. (English) Zbl 1435.41025 Tbil. Math. J. 11, No. 3, 175-191 (2018). MSC: 41A36 41A25 41A35 PDF BibTeX XML Cite \textit{V. N. Mishra} and \textit{R. Yadav}, Tbil. Math. J. 11, No. 3, 175--191 (2018; Zbl 1435.41025) Full Text: DOI Euclid OpenURL
Agrawal, Purshottam Narain; Baxhaku, Behar; Chauhan, Ruchi Quantitative Voronovskaya- and Grüss-Voronovskaya-type theorems by the blending variant of Szász operators including Brenke-type polynomials. (English) Zbl 1424.41040 Turk. J. Math. 42, No. 4, 1610-1629 (2018). MSC: 41A36 26A15 41A25 41A28 PDF BibTeX XML Cite \textit{P. N. Agrawal} et al., Turk. J. Math. 42, No. 4, 1610--1629 (2018; Zbl 1424.41040) Full Text: DOI OpenURL
Kajla, Arun The Kantorovich variant of an operator defined by D. D. Stancu. (English) Zbl 1426.41025 Appl. Math. Comput. 316, 400-408 (2018). MSC: 41A36 41A25 26A15 40A05 41A10 PDF BibTeX XML Cite \textit{A. Kajla}, Appl. Math. Comput. 316, 400--408 (2018; Zbl 1426.41025) Full Text: DOI OpenURL
Al-Sharif, Sh.; Awad, A. New type of simultaneous remotal sets in certain Banach spaces. (English) Zbl 1417.46011 Missouri J. Math. Sci. 30, No. 1, 45-53 (2018). Reviewer: Roshdi Khalil (Amman) MSC: 46B20 41A65 PDF BibTeX XML Cite \textit{Sh. Al-Sharif} and \textit{A. Awad}, Missouri J. Math. Sci. 30, No. 1, 45--53 (2018; Zbl 1417.46011) Full Text: Euclid OpenURL
Gairola, Asha Ram; Deepmala; Mishra, Lakshmi Narayan On the \(q\)-derivatives of a certain linear positive operators. (English) Zbl 1397.41005 Iran. J. Sci. Technol., Trans. A, Sci. 42, No. 3, 1409-1417 (2018). MSC: 41A28 05A30 26A15 33D05 41A36 PDF BibTeX XML Cite \textit{A. R. Gairola} et al., Iran. J. Sci. Technol., Trans. A, Sci. 42, No. 3, 1409--1417 (2018; Zbl 1397.41005) Full Text: DOI OpenURL
Şimşek, Ersin; Tunç, Tuncay On approximation properties of some class positive linear operators in \(q\)-analysis. (English) Zbl 1390.05029 J. Math. Inequal. 12, No. 2, 559-571 (2018). MSC: 05A30 41A25 41A36 47B38 PDF BibTeX XML Cite \textit{E. Şimşek} and \textit{T. Tunç}, J. Math. Inequal. 12, No. 2, 559--571 (2018; Zbl 1390.05029) Full Text: DOI OpenURL
Mohapatra, Ram N.; Szal, Bogdan On trigonometric approximation of functions in the \(L^{q}\) norm. (English) Zbl 1388.42003 Demonstr. Math. 51, 17-26 (2018). MSC: 42A10 41A25 PDF BibTeX XML Cite \textit{R. N. Mohapatra} and \textit{B. Szal}, Demonstr. Math. 51, 17--26 (2018; Zbl 1388.42003) Full Text: DOI arXiv OpenURL
Khosravian-Arab, Hassan; Dehghan, Mehdi; Eslahchi, M. R. A new approach to improve the order of approximation of the Bernstein operators: theory and applications. (English) Zbl 1388.41002 Numer. Algorithms 77, No. 1, 111-150 (2018). Reviewer: Francisco Pérez Acosta (La Laguna) MSC: 41A10 42A20 65D30 PDF BibTeX XML Cite \textit{H. Khosravian-Arab} et al., Numer. Algorithms 77, No. 1, 111--150 (2018; Zbl 1388.41002) Full Text: DOI OpenURL
Dhamija, Minakshi; Deo, Naokant Approximation by generalized positive linear Kantorovich operators. (English) Zbl 1499.41056 Filomat 31, No. 14, 4353-4368 (2017). MSC: 41A36 41A25 41A81 PDF BibTeX XML Cite \textit{M. Dhamija} and \textit{N. Deo}, Filomat 31, No. 14, 4353--4368 (2017; Zbl 1499.41056) Full Text: DOI OpenURL
Neer, Trapti; Agrawal, P. N. A genuine family of Bernstein-Durrmeyer type operators based on Polya basis functions. (English) Zbl 1488.41059 Filomat 31, No. 9, 2611-2623 (2017). MSC: 41A36 26A45 40A35 PDF BibTeX XML Cite \textit{T. Neer} and \textit{P. N. Agrawal}, Filomat 31, No. 9, 2611--2623 (2017; Zbl 1488.41059) Full Text: DOI OpenURL
Wafi, Abdul; Rao, Nadeem; Deepmala On Kantorovich form of generalized Szász-type operators using Charlier polynomials. (English) Zbl 1474.41069 Korean J. Math. 25, No. 1, 99-116 (2017). MSC: 41A36 PDF BibTeX XML Cite \textit{A. Wafi} et al., Korean J. Math. 25, No. 1, 99--116 (2017; Zbl 1474.41069) Full Text: DOI arXiv OpenURL
Gupta, Vijay; Acu, Ana Maria; Sofonea, Daniel Florin Approximation of Baskakov type Pólya-Durrmeyer operators. (English) Zbl 1411.41014 Appl. Math. Comput. 294, 318-331 (2017). MSC: 41A25 26A15 41A28 PDF BibTeX XML Cite \textit{V. Gupta} et al., Appl. Math. Comput. 294, 318--331 (2017; Zbl 1411.41014) Full Text: DOI OpenURL
Dirik, Fadime; Şahin, Pınar Okçu Statistical relatively equal convergence and Korovkin-type approximation theorem. (English) Zbl 1376.41024 Result. Math. 72, No. 3, 1613-1621 (2017). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{F. Dirik} and \textit{P. O. Şahin}, Result. Math. 72, No. 3, 1613--1621 (2017; Zbl 1376.41024) Full Text: DOI OpenURL
Anastassiou, George A. Approximations by multivariate perturbed neural network operators. (English) Zbl 1364.41005 Anal. Appl., Singap. 15, No. 3, 413-432 (2017). MSC: 41A17 41A25 41A30 41A36 PDF BibTeX XML Cite \textit{G. A. Anastassiou}, Anal. Appl., Singap. 15, No. 3, 413--432 (2017; Zbl 1364.41005) Full Text: DOI OpenURL
Mishra, V. N.; Gandhi, R. B. Simultaneous approximation by Szász-Mirakjan-Stancu-Durrmeyer type operators. (English) Zbl 1399.41046 Period. Math. Hung. 74, No. 1, 118-127 (2017). MSC: 41A36 41A10 PDF BibTeX XML Cite \textit{V. N. Mishra} and \textit{R. B. Gandhi}, Period. Math. Hung. 74, No. 1, 118--127 (2017; Zbl 1399.41046) Full Text: DOI OpenURL
Deshwal, Sheetal; Agrawal, P. N.; Araci, Serkan Modified Stancu operators based on inverse polya eggenberger distribution. (English) Zbl 1359.41012 J. Inequal. Appl. 2017, Paper No. 57, 11 p. (2017). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{S. Deshwal} et al., J. Inequal. Appl. 2017, Paper No. 57, 11 p. (2017; Zbl 1359.41012) Full Text: DOI OpenURL
Dhamija, Minakshi; Deo, Naokant Jain-Durrmeyer operators associated with the inverse Pólya-Eggenberger distribution. (English) Zbl 1410.41009 Appl. Math. Comput. 286, 15-22 (2016). MSC: 41A25 41A36 60E05 PDF BibTeX XML Cite \textit{M. Dhamija} and \textit{N. Deo}, Appl. Math. Comput. 286, 15--22 (2016; Zbl 1410.41009) Full Text: DOI OpenURL
Mittal, M. L.; Singh, Mradul Veer Applications of Cesàro submethod to trigonometric approximation of signals (functions) belonging to class \(\mathrm{lip}(\alpha, p)\) in \(L_p\)-norm. (English) Zbl 1487.42064 J. Math. 2016, Article ID 9048671, 7 p. (2016). MSC: 42C05 94A12 42A10 41A25 42A24 40G05 40C05 PDF BibTeX XML Cite \textit{M. L. Mittal} and \textit{M. V. Singh}, J. Math. 2016, Article ID 9048671, 7 p. (2016; Zbl 1487.42064) Full Text: DOI OpenURL
Hassan, H. A. Generalized \(q\)-Taylor formulas. (English) Zbl 1419.41003 Adv. Difference Equ. 2016, Paper No. 162, 12 p. (2016). MSC: 41A58 39A13 26A33 PDF BibTeX XML Cite \textit{H. A. Hassan}, Adv. Difference Equ. 2016, Paper No. 162, 12 p. (2016; Zbl 1419.41003) Full Text: DOI OpenURL
Narang, T. D.; Gupta, Sahil Best simultaneous approximation in quotient spaces. (English) Zbl 1366.41015 Cushing, Jim M. (ed.) et al., Applied analysis in biological and physical sciences. ICMBAA, Aligarh, India, June 4–6, 2015. New Delhi: Springer (ISBN 978-81-322-3638-2/hbk; 978-81-322-3640-5/ebook). Springer Proceedings in Mathematics & Statistics 186, 339-349 (2016). MSC: 41A28 41A52 41A65 PDF BibTeX XML Cite \textit{T. D. Narang} and \textit{S. Gupta}, Springer Proc. Math. Stat. 186, 339--349 (2016; Zbl 1366.41015) Full Text: DOI OpenURL
Acar, Tuncer Quantitative \(q\)-Voronovskaya and \(q\)-Grüss-Voronovskaya-type results for \(q\)-Szász operators. (English) Zbl 1351.41020 Georgian Math. J. 23, No. 4, 459-468 (2016). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{T. Acar}, Georgian Math. J. 23, No. 4, 459--468 (2016; Zbl 1351.41020) Full Text: DOI OpenURL
Ulusoy, Gulsum; Acar, Tuncer \(q\)-Voronovskaya type theorems for \(q\)-Baskakov operators. (English) Zbl 1347.41030 Math. Methods Appl. Sci. 39, No. 12, 3391-3401 (2016). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{G. Ulusoy} and \textit{T. Acar}, Math. Methods Appl. Sci. 39, No. 12, 3391--3401 (2016; Zbl 1347.41030) Full Text: DOI OpenURL
Deepmala; Piscoran, Laurian-Ioan Approximation of signals (functions) belonging to certain Lipschitz classes by almost Riesz means of its Fourier series. (English) Zbl 1347.42006 J. Inequal. Appl. 2016, Paper No. 163, 10 p. (2016). MSC: 42A24 42A10 41A25 PDF BibTeX XML Cite \textit{Deepmala} and \textit{L.-I. Piscoran}, J. Inequal. Appl. 2016, Paper No. 163, 10 p. (2016; Zbl 1347.42006) Full Text: DOI OpenURL
Acar, Tuncer; Aral, Ali; Rasa, Ioan The new forms of Voronovskaya’s theorem in weighted spaces. (English) Zbl 1334.41015 Positivity 20, No. 1, 25-40 (2016). MSC: 41A25 41A36 PDF BibTeX XML Cite \textit{T. Acar} et al., Positivity 20, No. 1, 25--40 (2016; Zbl 1334.41015) Full Text: DOI OpenURL
Mishra, Vishnu Narayan; Gandhi, R. B.; Nasaireh, Fadel Simultaneous approximation by Szász-Mirakjan-Durrmeyer-type operators. (English) Zbl 1331.41020 Boll. Unione Mat. Ital. 8, No. 4, 297-305 (2016). MSC: 41A28 41A36 41A10 PDF BibTeX XML Cite \textit{V. N. Mishra} et al., Boll. Unione Mat. Ital. 8, No. 4, 297--305 (2016; Zbl 1331.41020) Full Text: DOI OpenURL
Dhamija, Minakshi; Sakai, Ryozi; Deo, Naokant On approximation by Phillips type modified Bernstein operator in a mobile interval. (English) Zbl 1412.41012 J. Class. Anal. 7, No. 1, 25-37 (2015). MSC: 41A25 41A36 PDF BibTeX XML Cite \textit{M. Dhamija} et al., J. Class. Anal. 7, No. 1, 25--37 (2015; Zbl 1412.41012) Full Text: DOI OpenURL
Mishra, Vishnu Narayan; Sonavane, Vaishali Approximation of functions of Lipschitz class by \((N,p_n)(E,1)\) summability means of conjugate series of Fourier series. (English) Zbl 1412.42010 J. Class. Anal. 6, No. 2, 137-151 (2015). MSC: 42A24 41A25 42B05 42B08 40C05 PDF BibTeX XML Cite \textit{V. N. Mishra} and \textit{V. Sonavane}, J. Class. Anal. 6, No. 2, 137--151 (2015; Zbl 1412.42010) Full Text: DOI OpenURL
Acar, Tuncer Asymptotic formulas for generalized Szász-Mirakyan operators. (English) Zbl 1410.41025 Appl. Math. Comput. 263, 233-239 (2015). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{T. Acar}, Appl. Math. Comput. 263, 233--239 (2015; Zbl 1410.41025) Full Text: DOI OpenURL
Mittal, M. L.; Singh, Mradul Veer Approximation of functions of class \(\mathrm{Lip}(\alpha,p)\) in \(L_p\)-norm. (English) Zbl 1339.42005 Agrawal, P. N. (ed.) et al., Mathematical analysis and its applications. Proceedings of the international conference on recent trends in mathematical analyis and its applications, ICRTMAA 2014, Roorkee, India, December 21–23, 2014. New Delhi: Springer (ISBN 978-81-322-2484-6/hbk; 978-81-322-2485-3/ebook). Springer Proceedings in Mathematics & Statistics 143, 109-120 (2015). MSC: 42A10 42A24 40G05 41A25 PDF BibTeX XML Cite \textit{M. L. Mittal} and \textit{M. V. Singh}, Springer Proc. Math. Stat. 143, 109--120 (2015; Zbl 1339.42005) Full Text: DOI OpenURL
Ren, Mei-Ying; Zeng, Xiao-Ming Approximation of a kind of new type Bézier operators. (English) Zbl 1329.41008 J. Inequal. Appl. 2015, Paper No. 412, 10 p. (2015); erratum ibid. 2016, Paper No. 17, 1 p. (2016). MSC: 41A10 41A25 41A36 PDF BibTeX XML Cite \textit{M.-Y. Ren} and \textit{X.-M. Zeng}, J. Inequal. Appl. 2015, Paper No. 412, 10 p. (2015; Zbl 1329.41008) Full Text: DOI OpenURL
Agratini, Octavian Kantorovich sequences associated to general approximation processes. (English) Zbl 1326.41030 Positivity 19, No. 4, 681-693 (2015). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{O. Agratini}, Positivity 19, No. 4, 681--693 (2015; Zbl 1326.41030) Full Text: DOI OpenURL
Draganov, Borislav R. Strong estimates of the weighted simultaneous approximation by the Bernstein and Kantorovich operators and their iterated Boolean sums. (English) Zbl 1329.41019 J. Approx. Theory 200, 92-135 (2015); corrigendum ibid. 252, Article ID 105321, 3 p. (2020). Reviewer: Vijay Gupta (New Delhi) MSC: 41A25 41A30 PDF BibTeX XML Cite \textit{B. R. Draganov}, J. Approx. Theory 200, 92--135 (2015; Zbl 1329.41019) Full Text: DOI OpenURL
Păltănea, Radu; Stan, Gabriel Voronovskaja theorem for simultaneous approximation by Bernstein operators on a simplex. (English) Zbl 1321.41039 Mediterr. J. Math. 12, No. 3, 889-900 (2015). MSC: 41A36 41A63 41A28 41A10 PDF BibTeX XML Cite \textit{R. Păltănea} and \textit{G. Stan}, Mediterr. J. Math. 12, No. 3, 889--900 (2015; Zbl 1321.41039) Full Text: DOI OpenURL
Deo, N.; Bhardwaj, N. A better error estimation on Balázs operators. (English) Zbl 1321.41033 Lobachevskii J. Math. 36, No. 1, 9-14 (2015). MSC: 41A36 41A10 PDF BibTeX XML Cite \textit{N. Deo} and \textit{N. Bhardwaj}, Lobachevskii J. Math. 36, No. 1, 9--14 (2015; Zbl 1321.41033) Full Text: DOI OpenURL
Amato, Umberto; Della Vecchia, Biancamaria New results on rational approximation. (English) Zbl 1316.41011 Result. Math. 67, No. 3-4, 345-364 (2015). MSC: 41A20 41A25 41A36 PDF BibTeX XML Cite \textit{U. Amato} and \textit{B. Della Vecchia}, Result. Math. 67, No. 3--4, 345--364 (2015; Zbl 1316.41011) Full Text: DOI OpenURL
Anastassiou, George A. Approximation by perturbed neural network operators. (English) Zbl 1339.41025 Appl. Math. 42, No. 1, 57-81 (2015). MSC: 41A30 41A17 41A25 92B20 PDF BibTeX XML Cite \textit{G. A. Anastassiou}, Appl. Math. 42, No. 1, 57--81 (2015; Zbl 1339.41025) Full Text: DOI Link OpenURL
Abbas, Mujahid; Ali, Basit; Romaguera, Salvador Generalized contraction and invariant approximation results on nonconvex subsets of normed spaces. (English) Zbl 1472.47041 Abstr. Appl. Anal. 2014, Article ID 391952, 5 p. (2014). MSC: 47H10 47H09 41A50 PDF BibTeX XML Cite \textit{M. Abbas} et al., Abstr. Appl. Anal. 2014, Article ID 391952, 5 p. (2014; Zbl 1472.47041) Full Text: DOI OpenURL
Cárdenas-Morales, D.; Garrancho, P.; Raşa, I. Approximation properties of Bernstein-Durrmeyer type operators. (English) Zbl 1410.41030 Appl. Math. Comput. 232, 1-8 (2014). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{D. Cárdenas-Morales} et al., Appl. Math. Comput. 232, 1--8 (2014; Zbl 1410.41030) Full Text: DOI OpenURL
Cárdenas-Morales, Daniel; Gupta, Vijay Two families of Bernstein-Durrmeyer type operators. (English) Zbl 1338.41013 Appl. Math. Comput. 248, 342-353 (2014). MSC: 41A35 PDF BibTeX XML Cite \textit{D. Cárdenas-Morales} and \textit{V. Gupta}, Appl. Math. Comput. 248, 342--353 (2014; Zbl 1338.41013) Full Text: DOI OpenURL
Jung, Hee Sun; Deo, Naokant; Dhamija, Minakshi Pointwise approximation by Bernstein type operators in mobile interval. (English) Zbl 1335.41004 Appl. Math. Comput. 244, 683-694 (2014). MSC: 41A35 PDF BibTeX XML Cite \textit{H. S. Jung} et al., Appl. Math. Comput. 244, 683--694 (2014; Zbl 1335.41004) Full Text: DOI OpenURL
Mittal, M. L.; Singh, Mradul Veer Approximation of signals (functions) by trigonometric polynomials in \(L_p\)-norm. (English) Zbl 1317.42003 Int. J. Math. Math. Sci. 2014, Article ID 267383, 6 p. (2014). MSC: 42A10 42A05 42A24 40C05 40G05 41A25 PDF BibTeX XML Cite \textit{M. L. Mittal} and \textit{M. V. Singh}, Int. J. Math. Math. Sci. 2014, Article ID 267383, 6 p. (2014; Zbl 1317.42003) Full Text: DOI OpenURL
Chandok, Sumit; Sintunavarat, Wutiphol; Kumam, Poom Some coupled common fixed points for a pair of mappings in partially ordered \(G\)-metric spaces. (English) Zbl 1295.54044 Math. Sci., Springer 7, Paper No. 24, 7 p. (2013). MSC: 54H25 54F05 54E40 41A50 PDF BibTeX XML Cite \textit{S. Chandok} et al., Math. Sci., Springer 7, Paper No. 24, 7 p. (2013; Zbl 1295.54044) Full Text: DOI OpenURL
Chandok, Sumit; Postolache, Mihai Fixed point theorem for weakly Chatterjea-type cyclic contractions. (English) Zbl 1300.54060 Fixed Point Theory Appl. 2013, Paper No. 28, 9 p. (2013). Reviewer: Costica Mustăţa (Cluj-Napoca) MSC: 54H25 54E50 41A50 PDF BibTeX XML Cite \textit{S. Chandok} and \textit{M. Postolache}, Fixed Point Theory Appl. 2013, Paper No. 28, 9 p. (2013; Zbl 1300.54060) Full Text: DOI OpenURL
Özarslan, Mehmet Ali; Aktuğlu, Hüseyin Quantitative global estimates for generalized double Szász-Mirakjan operators. (English) Zbl 1417.41004 J. Appl. Math. 2013, Article ID 613258, 8 p. (2013). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{M. A. Özarslan} and \textit{H. Aktuğlu}, J. Appl. Math. 2013, Article ID 613258, 8 p. (2013; Zbl 1417.41004) Full Text: DOI OpenURL
Gao, Fuchang; Han, Lixing; Schilling, Kenneth On the rate of convergence of iterated exponentials. (English) Zbl 1296.41013 J. Appl. Math. Comput. 39, No. 1-2, 89-96 (2012). MSC: 41A25 40A05 PDF BibTeX XML Cite \textit{F. Gao} et al., J. Appl. Math. Comput. 39, No. 1--2, 89--96 (2012; Zbl 1296.41013) Full Text: DOI OpenURL
Gal, Sorin G. Differentiated generalized Voronovskaja’s theorem in compact disks. (English) Zbl 1257.30031 Result. Math. 61, No. 3-4, 347-353 (2012); erratum ibid. 63, No. 1-2, 713-716 (2013). MSC: 30E10 41A25 41A28 PDF BibTeX XML Cite \textit{S. G. Gal}, Result. Math. 61, No. 3--4, 347--353 (2012; Zbl 1257.30031) Full Text: DOI OpenURL
Makarov, V. L.; Demkiv, I. I. Approximation of the Urysohn operator by operator polynomials of Stancu type. (English. Russian original) Zbl 1263.41015 Ukr. Math. J. 64, No. 3, 356-386 (2012); translation from Ukr. Mat. Zh. 64, No. 3, 318-343 (2012). Reviewer: Vladimir V. Peller (East Lansing) MSC: 41A36 PDF BibTeX XML Cite \textit{V. L. Makarov} and \textit{I. I. Demkiv}, Ukr. Math. J. 64, No. 3, 356--386 (2012; Zbl 1263.41015); translation from Ukr. Mat. Zh. 64, No. 3, 318--343 (2012) Full Text: DOI Link OpenURL
Chandok, Sumit; Narang, T. D. Invariant points and \(\varepsilon\)-simultaneous approximation. (English) Zbl 1220.41003 Int. J. Math. Math. Sci. 2011, Article ID 579819, 10 p. (2011). MSC: 41A28 PDF BibTeX XML Cite \textit{S. Chandok} and \textit{T. D. Narang}, Int. J. Math. Math. Sci. 2011, Article ID 579819, 10 p. (2011; Zbl 1220.41003) Full Text: DOI OpenURL
Agratini, Octavian; Nowak, Grzegorz On a generalization of Bleimann, Butzer and Hahn operators based on \(q\)-integers. (English) Zbl 1217.33033 Math. Comput. Modelling 53, No. 5-6, 699-706 (2011). MSC: 33D99 41A99 39A13 PDF BibTeX XML Cite \textit{O. Agratini} and \textit{G. Nowak}, Math. Comput. Modelling 53, No. 5--6, 699--706 (2011; Zbl 1217.33033) Full Text: DOI OpenURL
Örkcü, Mediha; Doğru, Ogün Weighted statistical approximation by Kantorovich type \(q\)-Szász-Mirakjan operators. (English) Zbl 1232.41029 Appl. Math. Comput. 217, No. 20, 7913-7919 (2011). Reviewer: N. I. Skiba (Rostov-na-Donu) MSC: 41A35 PDF BibTeX XML Cite \textit{M. Örkcü} and \textit{O. Doğru}, Appl. Math. Comput. 217, No. 20, 7913--7919 (2011; Zbl 1232.41029) Full Text: DOI OpenURL
Kurbanov, V. M. Conditions for the absolute and uniform convergence of the biorthogonal series corresponding to a differential operator. (English. Russian original) Zbl 1211.34108 Dokl. Math. 78, No. 2, 748-750 (2008); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 422, No. 5, 594-596 (2008). MSC: 34L10 41A25 47E05 PDF BibTeX XML Cite \textit{V. M. Kurbanov}, Dokl. Math. 78, No. 2, 748--750 (2008; Zbl 1211.34108); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 422, No. 5, 594--596 (2008) Full Text: DOI OpenURL