Aslantaş, Mustafa Nonunique best proximity point results with an application to nonlinear fractional differential equations. (English) Zbl 1497.54036 Turk. J. Math. 46, No. 7, 2942-2958 (2022). MSC: 54H25 47H10 34A08 PDF BibTeX XML Cite \textit{M. Aslantaş}, Turk. J. Math. 46, No. 7, 2942--2958 (2022; Zbl 1497.54036) Full Text: DOI OpenURL
Verma, Sachin Kumar; Vats, Ramesh Kumar; Kumar, Avadhesh; Vijayakumar, Velusamy; Shukla, Anurag A discussion on the existence and uniqueness analysis for the coupled two-term fractional differential equations. (English) Zbl 1506.34021 Turk. J. Math. 46, No. 2, SI-1, 516-532 (2022). Reviewer: Xiping Liu (Shanghai) MSC: 34A08 26A33 34B15 47N20 34B10 PDF BibTeX XML Cite \textit{S. K. Verma} et al., Turk. J. Math. 46, No. 2, 516--532 (2022; Zbl 1506.34021) Full Text: DOI OpenURL
Sakar, Fethiye Müge; Hussain, Saqib; Ahmad, Ibrar Application of Gegenbauer polynomials for biunivalent functions defined by subordination. (English) Zbl 1495.30013 Turk. J. Math. 46, No. 3, 1089-1098 (2022). MSC: 30C45 30C50 PDF BibTeX XML Cite \textit{F. M. Sakar} et al., Turk. J. Math. 46, No. 3, 1089--1098 (2022; Zbl 1495.30013) Full Text: DOI OpenURL
Aouf, Mohamed K.; Mostafa, Adela O.; Bulboaca, Teodor Notes on multivalent Bazilević functions defined by higher order derivatives. (English) Zbl 1493.30021 Turk. J. Math. 45, No. 2, 624-633 (2021). MSC: 30C45 PDF BibTeX XML Cite \textit{M. K. Aouf} et al., Turk. J. Math. 45, No. 2, 624--633 (2021; Zbl 1493.30021) Full Text: DOI OpenURL
Vojvodic, Biljana; Pikula, Milenko; Vladicic, Vladimir; Çetinkaya, Fatma Ayça Inverse problems for differential operators with two delays larger than half the length of the interval and Dirichlet conditions. (English) Zbl 1453.34097 Turk. J. Math. 44, No. 3, 900-905 (2020). Reviewer: Vjacheslav Yurko (Saratov) MSC: 34K29 34K08 PDF BibTeX XML Cite \textit{B. Vojvodic} et al., Turk. J. Math. 44, No. 3, 900--905 (2020; Zbl 1453.34097) Full Text: DOI OpenURL
Shahriari, Mohammad Inverse problem for Sturm-Liouville differential operators with finite number of constant delays. (English) Zbl 1453.34096 Turk. J. Math. 44, No. 3, 778-790 (2020). Reviewer: Vjacheslav Yurko (Saratov) MSC: 34K29 34K10 34K08 PDF BibTeX XML Cite \textit{M. Shahriari}, Turk. J. Math. 44, No. 3, 778--790 (2020; Zbl 1453.34096) Full Text: DOI OpenURL
Çetin, Nursel; Radu, Voichiţa Adriana Approximation by generalized Bernstein-Stancu operators. (English) Zbl 1434.41014 Turk. J. Math. 43, No. 4, 2032-2048 (2019). MSC: 41A36 41A10 41A25 PDF BibTeX XML Cite \textit{N. Çetin} and \textit{V. A. Radu}, Turk. J. Math. 43, No. 4, 2032--2048 (2019; Zbl 1434.41014) Full Text: Link OpenURL
Ahmad, Khurshid; Arif, Muhammad; Liu, Jin Lin Convolution properties for a family of analytic functions involving \(q\)-analogue of Ruscheweyh differential operator. (English) Zbl 1421.30012 Turk. J. Math. 43, No. 3, 1712-1720 (2019). MSC: 30C45 30C50 PDF BibTeX XML Cite \textit{K. Ahmad} et al., Turk. J. Math. 43, No. 3, 1712--1720 (2019; Zbl 1421.30012) Full Text: DOI OpenURL
Shahriari, Mohammad Inverse problem for Sturm-Liouville differential operators with two constant delays. (English) Zbl 1415.34114 Turk. J. Math. 43, No. 2, 965-976 (2019). Reviewer: Natalia Bondarenko (Saratov) MSC: 34K29 34K06 34K08 34K10 PDF BibTeX XML Cite \textit{M. Shahriari}, Turk. J. Math. 43, No. 2, 965--976 (2019; Zbl 1415.34114) Full Text: DOI OpenURL
Agrawal, Purshottam Narain; Baxhaku, Behar; Chauhan, Ruchi Quantitative Voronovskaya- and Grüss-Voronovskaya-type theorems by the blending variant of Szász operators including Brenke-type polynomials. (English) Zbl 1424.41040 Turk. J. Math. 42, No. 4, 1610-1629 (2018). MSC: 41A36 26A15 41A25 41A28 PDF BibTeX XML Cite \textit{P. N. Agrawal} et al., Turk. J. Math. 42, No. 4, 1610--1629 (2018; Zbl 1424.41040) Full Text: DOI OpenURL